
Luma Adjustment for High Dynamic Range Video

Jacob Ström, Jonatan Samuelsson, and Kristofer Dovstam

Ericsson Research
Färögatan 6

164 80 Stockholm, Sweden
{jacob.strom,jonatan.samuelsson,kristofer.dovstam}@ericsson.com

Abstract

In this paper we present a solution to a luminance artifact problem that occurs when con-
ventional non-constant luminance Y ′CbCr and 4:2:0 subsampling is combined with the type
of highly non-linear transfer functions typically used for High Dynamic Range (HDR) video.
These luminance artifacts can be avoided by selecting a luma code value that minimizes the
luminance error. Subjectively, the quality improvement is clearly visible even for uncom-
pressed video. Improvements in tPSNR-Y of up to 20 dB have been observed, compared to
conventional subsampling. Crucially, no change in the decoder is needed.

Introduction

Recently, a tremendous increase in quality has been achieved in digital video by
increasing resolution, going from standard definition via high definition to 4k. High
dynamic range (HDR) video uses another way to increase perceived image quality,
namely by increasing contrast. The conventional TV system was built for luminances
between 0.1 candela per square meter (cd/m2) and 100 cd/m2, or about ten doublings
of luminance [5]. We will refer to this as standard dynamic range (SDR) video. As a
comparison, some HDR monitors are capable of displaying a range from 0.01 cd/m2

to 4000 cd/m2, i.e., over 18 doublings.

Conventional SDR Processing

Typical SDR systems such as TVs or computer monitors often use an eight bit rep-
resentation where 0 represents dark and 255 bright1. Just linearly scaling the code
value range [0, 255] to the luminance range [0.1, 100] cd/m2 mentioned above would
not be ideal: The first two code words 0 and 1 would be mapped to 0.1 cd/m2

and 0.49 cd/m2 respectively, a relative difference of 0.49−0.1
0.1

= 390%. The last two
code words 254 and 255 on the other hand, would be mapped to 99.61 cd/m2 and
100 cd/m2 respectively, a relative difference of only 100−99.61

99.61
= 0.3%. To avoid this

large difference in relative step sizes, SDR systems include an electro-optical transfer
function (EOTF) which maps code values to luminances in a non-linear way. As an
example, the red component is first divided by 255 to get a value R′01 ∈ [0, 1] which
is then fed through a power function

R01 = (R′01)
γ. (1)

1Some systems use a restricted range from 16 to 235, but we disregard this here for simplicity.



R

G

B

1
Lp

1
Lp

1
Lp

R01

G01

B01

EOTF-1 R’01

G’01

B’01

color
trans-
form

color
trans-
form

Y’01

Cb0.5

Cr0.5

10-bit
quant-
ization

Y’444

Cb444

Cr444

subsample

linear light
[0, Lp] cd/m2
linear light

[0, Lp] cd/m2

normalized
linear light

[0,1]

perceptual
RGB
[0, 1]

normalized
Y’CbCr

[0,1]x[-0.5, 0.5]2

Y’CbCr
4:4:4

[0,1023]

EOTF-1

EOTF-1 subsample

Y’420

Cb420

Cr420

Y’CbCr
4:2:0

[0,1023]

Figure 1: Going from linear light to Y ′CbCr.

Finally R01 is scaled to the range [0.1, 100] to get the light representation R in cd/m2.
The green and blue components are handled in the same way. By selecting γ = 2.4,
the relative difference between the first two code words becomes 0.16% and ditto for
the last two code words becomes 0.95%, which is much more balanced.

SDR acquisition process

For video, the acquisition process can be modelled according to Figure 1. Assuming
the camera sensor measures linear light (R,G,B) in cd/m2, the first step is to divide
by the peak brightness to get to normalized linear light (R01, G01, B01). Then the

inverse of the EOTF is applied2 R′01 = (R01)
1
γ , and likewise for green and blue. To

decorrelate the color components, the transform Y ′01
Cb0.5
Cr0.5

 =

 0.2627 0.6780 0.0593
−0.1396 −0.3604 0.5000
0.5000 −0.4598 −0.0402

 R′01
G01

B01

 , (2)

is applied. The matrix coefficients depend on the color space, here we have assumed
that (R,G,B) is in the BT.2020 color space. The 0.5 subscript of Cb0.5 and Cr0.5, is
to indicate that they vary between [−0.5, 0.5] rather than between [0, 1].

The next step is to quantize the data. In this example we quantize to 10 bits,
yielding components (Y ′444, Cb444, Cr444) that vary from 0 to 1023. Finally, the last two
components are subsampled. We have followed the subsampling procedure described
by Luthra et al. [3]. The data can now be sent to a video encoder such as HEVC [7].

Display of SDR data

On the receiver side, the HEVC bitstream is decoded to recover Ŷ ′420, Ĉb420 and Ĉr420.
The hats are used to indicate that these values may differ from Y ′420, Cb420 and Cr420
due to the fact that HEVC is a lossy encoder. The signal is then processed in reverse
according to Figure 2. The end result is the linear light representation (R̂, Ĝ, B̂)
which is displayed.

2Sometimes it may be advantageous to use a function that is not the inverse of the EOTF, but
we disregard this case here for simplicity.



Y’444

Cb444

Cr444

upsample

Y’CbCr
4:4:4

[0,1023]

upsample

Y’420

Cb420

Cr420

Y’CbCr
4:2:0

[0,1023]

inverse
quant-
ization

Y’01

Cb0.5

Cr0.5

normalized
Y’CbCr

[0,1]x[-0.5, 0.5]2

R’01

G’01

B’01

perceptual
RGB
[0, 1]

inverse
color
trans-
form

inverse
color
trans-
form

EOTF

EOTF

EOTF

R01

G01

B01

normalized
linear light

[0,1]

Lp

Lp

Lp

R

G

B

linear light
[0, Lp] cd/m2
linear light

[0, Lp] cd/m2

Figure 2: Going from Ŷ ′ĈbĈr 4:2:0 to linear light.

HDR processing

For HDR data, which may include luminances of up to 10, 000 cd/m2, a simple power
function is not a good fit to the contrast sensitivity of the human eye over the entire
range of luminances. Any fixed value of γ will result in too coarse a quantization
either in the dark tones, the bright tones, or the mid tones. To solve this problem,
Miller et al. introduce the PQ-EOTF [1], changing the EOTF box in Figure 2 to

R01 =

(
(R′01)

1
m − c1

c2 − c3(R′01)
1
m

) 1
n

, (3)

where m = 78.8438, n = 0.1593, c1 = 0.8359, c2 = 18.8516, and c3 = 18.6875. The
peak luminance Lp is also changed from 100 to 10, 000. Likewise the EOTF−1 box in
Figure 1 is replaced by the inverse of Equation 3.

Problem

If applying the processing outlined in Figures 1 and 2 (with the new EOTF and
EOTF−1 and Lp = 10, 000), something unexpected occurs. As is shown in the first two
rows of Figure 5, artifacts appear. Since the printed medium cannot reproduce HDR

images, tone-mapped versions are calculated usingRSDR = clamp
(

255× (R× 2c)
1
γ , 0, 255

)
.

Here clamp (x, a, b) clamps the value x to the interval [a, b], γ = 2.22, and the ex-
posure value c varies for the different images. The green and blue components are
treated similarly. In the left column of Figure 5 we can see (the tonemapped version
of) the original data (R,G,B). In the middle column we can see (the tonemapped

version of) the end result
(
R̂, Ĝ, B̂

)
after going through the processing outlined in

Figure 1 followed by the processing in Figure 2. Note that for the first two rows of
Figure 5, no compression has taken place other than subsampling and quantizing to
10 bits. Yet disturbing artifacts occur. This problem was pointed out and illustrated
by François at the 110th MPEG meeting in Strasbourg, 2014 [2].



Analysis

Assume that the following two pixels are next to each other in an image:

RGB1 = (1000, 0, 100), and (4)

RGB2 = (1000, 4, 100) (5)

Note that these colors are quite similar. However, the first four steps of Figure 1 yield

Y ′444Cb444Cr4441 = (263, 646, 831) and (6)

Y ′444Cb444Cr4442 = (401, 571, 735) (7)

which are quite different from each other. The average of these two values is Y ′CbCr =
(332, 608.5, 783). Now if we would go backwards in the processing chain to see what
linear RGB value this represents, we get RGB = (1001, 0.48, 100.5), which is quite
close to both RGB1 and RGB2. Thus, just averaging all three components is not a
problem. A larger problem arises when only Cb and Cr are interpolated, and we use
the Y ′ values from the pixels without interpolation. This is what is done in conven-
tional chroma subsampling which is performed in order to create a 4:2:0 representa-
tion. An example is the anchor generation process described by Luthra et al. [3]. For
instance, taking Y ′ from the first pixel in Equation 6, i.e., Y ′CbCr = (263, 608.5, 783)
represents a linear RGB color of (484, 0.03, 45), which is much too dark. Similarly,
taking Y ′ from the second pixel, in Equation 7, i.e., Y ′CbCr = (401, 608.5, 783) gives
an RGB value of (2061, 2.2, 216), which is too bright.

Possible Workarounds

Consider adding a third pixel to the example,

RGB3 = (1000, 8, 100). (8)

If we convert these linear inputs to R′01G
′
01B

′
01 we get

R′01G
′
01B

′
011 = (0.7518, 0.0000, 0.5081) (9)

R′01G
′
01B

′
012 = (0.7518, 0.2324, 0.5081) (10)

R′01G
′
01B

′
013 = (0.7518, 0.2824, 0.5081). (11)

Clearly, the jump in G′01 is bigger between the first and second pixel although the
linear G changes in equal steps of 4. Likewise, the difference between the Y ′CbCr
coordinates will be bigger between the first two pixels than the last two. Hence, the
effect will be biggest when one or two of the components are close to zero in linear
light, i.e., when the color is close to the edge of the color gamut, something that was
also pointed out by François [2]. Thus one way to avoid the artifacts can be to just
avoid saturated colors. However, the larger color space of BT.2020 was introduced
specifically to allow for more saturated colors, so that solution is not desirable.

This highlights another issue: Much test content is shot in Rec.709, and after
conversion to BT.2020, none of the colors will be fully saturated and thus the artifacts



linear 
RGB pre-

processing
Y’CbCr

4:2:0

post
processing

linear

RGB

linearRGB to
XYZ luminance Y

linearRGB to
XYZ luminance Y

compare
Y and Y

if Y too big
lower Y’

if Y too small
increase Y’

o

o

Figure 3: By changing the Y ′ value in an individual pixel, it is possible to reach a linear
luminance Ŷ that matches the desired linear luminance Yo.

will be small. As an example, a pixel acquired in Rec.709, e.g., RGB709 = (0, 500, 0)
will after conversion to BT.2020 no longer have any zero components, RGB2020 =
(165, 460, 44). Later on, when cameras are capable of recording in BT.2020, much
stronger artifacts will appear. To emulate the effect of BT.2020 content in a BT.2020
container, we have therefore used Rec.709 material in a Rec.709 container for the
processing of the figures in this document, such as for Figure 5. Mathematically
however, there is no difference, since the coordinates R01, G01B01 will span the full
range of [0, 1] in both cases.

Another workaround is to use constant luminance processing (CL), as described in
ITU-R Rec. BT.2020 [6]. In CL, all of the luminance is carried in Y ′, as opposed to
only most of the luminance being carried in the luma Y ′ of Figure 1, which is referred
to as non-constant luminance processing (NCL). However, one problem with CL is
that it affects the entire chain; converting back and forth between a 4:2:0/4:2:2 CL
representation and a 4:2:0/4:2:2 NCL representation endangers introducing artifacts
in every conversion step. In practice it has therefore been difficult to convert entire
industries from the conventional NCL to CL.

Proposed Solution: Luma Adjustment

The basic idea is to make sure that the resulting luminance matches the desired
one. With luminance, we mean the Y component of the (linear) CIE1931 XYZ color
space [4]. This Y is different from the luma Y ′ of Figure 1 since Y is calculated from
the linear R G B values

Y = wRR + wGG+ wBB, (12)

where wR = 0.2627, wG = 0.6780 and wB = 0.0593. The luminance Y corresponds
well to how the human visual system appreciates brightness, so it is interesting to
preserve it well. This is shown in Figure 3 where both the processed signal (top) and
the original signal (bottom) is converted to linear XYZ. Then the Y components are
quite different as can be seen in the figure. The key insight is that the luma value
Y ′ can be changed independently in each pixel, and therefore it is possible to arrive
at the desired, or original, linear luminance Yo by changing Y ′ until Ŷ equals Yo, as
is shown in Figure 3. It is also the case that Ŷ increases monotonically with Y ′,
which means that it is possible to know the direction in which Y ′ should be changed.



Y’444

Cb444

Cr444

Y’CbCr
4:4:4

[0,1023]

inverse
quant-
ization

Y’01

Cb0.5

Cr0.5

normalized
Y’CbCr

[0,1]x[-0.5, 0.5]2

R’

G’

B’

unclipped
perceptual

RGB

EOTF

EOTF

EOTF

R01

G01

B01

normalized
linear light

[0,1]

Lp

Lp

Lp

R

G

B

linear light
[0, Lp] cd/m2
linear light

[0, Lp] cd/m2

clip
against

0

R’0

G’0

B’0

clip
against

1

zero-clipped
perceptual

RGB

R’01

G’01

B’01

perceptual
RGB
[0,1]

RGB
to

XYZ

(X)

Y

(Z)

linear luminance
[0, Lp] cd/m2

linear luminance
[0, Lp] cd/m2

inverse
color
transform

Figure 4: How Ŷ is calculated including details on clipping.

Therefore simple methods such as interval halving can be used to find the optimal
Y ′, in at most ten steps for 10 bit quantization. If a one-step solution is preferred,
it is possible to use a 3D look-up table that takes in Cb, Cr and the desired linear
luminance Yo and delivers Y ′.

Implementational aspects

The technique can be implemented efficiently in the following way: First, the desired,
or original luminance Yo for each pixel is obtained by applying Equation 12 to the
original (R,G,B) values of each pixel. Second, the entire chain from (R,G,B) in Fig-

ure 1 to
(
Ŷ ′01, Ĉb0.5, Ĉr0.5

)
in Figure 2 is carried out. Then, for each pixel, a starting

interval of [0, 1023] is set. Next, the candidate value Ŷ ′444 = 512 is tried. Ŷ ′01 is calcu-

lated from the candidate value, and using the previously calculated
(
Ĉb0.5, Ĉr0.5

)
it is

possible to go through the last few steps of Figure 2, yielding
(
R̂, Ĝ, B̂

)
. This is now

fed into Equation 12 to get the candidate luminance Ŷ . For a given pixel, if Ŷ < Yo,
this means that the candidate value Ŷ ′444 was too small, and that the correct luma
value must be in the interval [512, 1023]. Likewise if Ŷ > Yo, the correct luma value
must be in the interval [0, 512]. The process is now repeated, and after ten iterations
the interval contains two neighboring values such as [218, 219]. At this stage, both of

the two values are tried, and the one that produces the smallest error
(
Ŷ − Yo

)2
is

selected. We call this way of finding the best luma value “luma adjustment”.

Mathematical Bounds

This section will describe some mathematical bounds on the optimal Ŷ ′444 that can
be used to lower the number of needed iterations compared to if the entire interval
[0, 1023] is used. Figure 4 describes the calculation from Ŷ ′444 to Ŷ . This figure is
more detailed than Figure 2; it also describes the clipping of R̂′, Ĝ′ and B̂′ that is
needed due to the fact that the inverse color transform may result in colors outside



the interval [0, 1]. Starting with Equation 12, and following Figure 4 backwards gives

Ŷ = wRR̂ + wGĜ+ wBB̂ (13)

= wRLpR̂01 + wGLpĜ01 + wBLpB̂01 (14)

= wRLptf
(
R̂′01

)
+ wGLptf

(
Ĝ′01

)
+ wBLptf

(
B̂′01

)
, (15)

where tf(·) is the EOTF of Equation 3. Now let M̂ ′
01 = max{R̂′01, Ĝ′01, B̂′01}. Since

tf(·) is monotonically increasing, it follows that tf
(
R̂′01

)
≤ tf

(
M̂ ′

01

)
, and the same

is true for green and blue. Hence

Ŷ ≤ wRLptf
(
M̂ ′

01

)
+ wGLptf

(
M̂ ′

01

)
+ wBLptf

(
M̂ ′

01

)
(16)

= (wR + wG + wB)Lptf
(
M̂ ′

01

)
(17)

= Lptf
(

max{R̂′01, Ĝ′01, B̂′01}
)

(18)

≤ Lptf
(

max{R̂′0, Ĝ′0, B̂′0}
)
, (19)

since wR + wG + wB = 1. The last step is due to the fact that clipping against 1
can never make a value larger. We now make the crucial observation that all three

variables
(
R̂′, Ĝ′, B̂′

)
cannot be negative at the same time. They are calculated as

R̂′ = Ŷ ′01 +a13Ĉr0.5
Ĝ′ = Ŷ ′01 −a22Ĉb0.5 −a23Ĉr0.5
B̂′ = Ŷ ′01 +a32Ĉb0.5

(20)

where all coefficients {aij} > 0. (The relation in Equation 2 is the inverse of this rela-

tion.) For both R̂′ and B̂′ to be smaller than zero, both Ĉb0.5 and Ĉr0.5 must be nega-
tive, since Ŷ ′01 ≥ 0. But in that case Ĝ′ must be positive. Hence max{R̂′, Ĝ′, B̂′} ≥ 0,
which means that max{R̂′, Ĝ′, B̂′} = max{R̂′0, Ĝ′0, B̂′0}. We can therefore write

Ŷ ≤ Lptf
(

max{R̂′, Ĝ′, B̂′}
)
. (21)

Now assume R̂′ is the largest of R̂′, Ĝ′ and B̂′. We then have

Ŷred−is−biggest ≤ Lptf
(
R̂′
)

(22)

which can be inverted to

tf−1
(
Ŷred−is−biggest/Lp

)
≤ Ŷ ′01 + a13Ĉr0.5 (23)

where we have used Equation 20 to replace R̂′. Thus, if red happens to be the biggest
color component, we have a bound on the optimal Ŷ ′01,

Ŷ ′01 ≥ tf−1 (Yo/Lp)− a13Ĉr0.5, (24)



where Yo is our desired luminance, i.e., the luminance of the original. Similarly, if
green or blue happens to be the biggest color component, we have two other bounds:

Ŷ ′01 ≥ tf−1 (Yo/Lp) + a22Ĉb0.5 + a23Ĉr0.5 (25)

Ŷ ′01 ≥ tf−1 (Yo/Lp)− a32Ĉb0.5 (26)

One of these three bounds must be the correct one, so we can simply take the most
conservative bound. Hence we get

Ŷ ′01 ≥ Ŷ ′lower = tf−1 (Yo/Lp) + r, (27)

where r = min{−a13Ĉr0.5, a22Ĉb0.5 + a23Ĉr0.5, −a32Ĉb0.5}. In a similar fashion, it
is possible to calculate an upper bound for Ŷ ′01, namely

Ŷ ′01 ≤ Ŷ ′upper = tf−1 (Yo/Lp) + s, (28)

where s = max{−a13Ĉr0.5, a22Ĉb0.5 + a23Ĉr0.5, −a32Ĉb0.5}. Finally, Ŷ ′lower and
Ŷ ′upper can be multiplied by 1023 to get bounds on Ŷ ′444 instead of Ŷ ′01.

Tighter Upper Bound

A tighter upper bound can be found using the fact that the EOTF in Equation 3 is
a convex function: From Equation 15 we get

Ŷ /Lp = wRtf
(
R̂′01

)
+ wGtf

(
Ĝ′01

)
+ wBtf

(
B̂′01

)
. (29)

For a convex function f(x), the following inequality holds if
∑

k wk = 1,

w1f(x1) + w2f(x2) + w3f(x3) ≥ f(w1x1 + w2x2 + w3x3), (30)

Thus
Ŷ /Lp ≥ tf

(
wRR̂

′
01 + wGĜ

′
01 + wBB̂

′
01

)
. (31)

If none of the variables clip, this is equal to

Ŷ /Lp ≥ tf
(
wRR̂

′ + wGĜ
′ + wBB̂

′
)
. (32)

Taking the inverse of Equation 20 gives Ŷ ′01
Ĉb0.5
Ĉr0.5

 =

 0.2627 0.6780 0.0593
−0.1396 −0.3604 0.5000
0.5000 −0.4598 −0.0402

 R̂′

Ĝ′

B̂′

 , (33)

and we can see that the expression in Equation 32 exactly matches the first row,
giving

Ŷ /Lp ≥ tf
(
Ŷ ′01

)
. (34)



Figure 5: Left: Original 4:4:4. Middle: Conventional processing uncompressed (top two
images) and compressed to 20835 kBps (bottom image). Right: Proposed method un-
compressed (top two images) and compressed to 17759 kBps (bottom image). Sequences
courtesy of Technicolor and the NevEx project.

This can be inverted to get

Ŷ ′01 ≤ Ŷ ′upper−tight = tf−1 (Yo/Lp) . (35)

Since we have disregarded the clipping, this bound is not guaranteed to hold. In
practice however, the bound Ŷ ′upper−tight gives a good end result if none of the following
variables R′test, G

′
test or B′test overflows, i.e., exceeds 1.0:

R′test = tf−1 (Yo/Lp) + a13Ĉr0.5 (36)

G′test = tf−1 (Yo/Lp)− a22Ĉb0.5 − a23Ĉr0.5 (37)

B′test = tf−1 (Yo/Lp) + a32Ĉb0.5. (38)

If any of the variables exceed 1.0, the bound Ŷ ′upper can be used instead.

Results

We implemented the conventional processing chain that is used for creating the an-
chors in [3] and compared this to our chain, which includes the luma adjustment step,
but keeps the decoder the same. The first two rows of Figure 5 show results without
compression. Here, both the conventional processing chain and our processing chain
converts to Y ′CbCr 4:2:0 and then back to linear RGB. The bottom row shows com-
pressed results. Note how artifacts are considerably reduced for the proposed method.
Total encoding time (color conversion plus HM compression) increases about 3% com-
pared to traditional processing. Measured over only the color conversion, execution
time increases around 30% compared with the color conversion process from [3].



Table 1: tPSNR-Y and deltaE increase (dB) Rec.709 container.
class sequence tPSNR-Y deltaE

class A’ FireEaterClip4000r1 13.81 2.23
Tibul2Clip4000r1 18.01 3.85

Market3Clip4000r2 20.30 0.15
Overall 17.37 2.08

Table 2: tPSNR-Y and deltaE increase (dB) for BT.2020 container.
class sequence tPSNR-Y deltaE

class A FireEaterClip4000r1 5.88 0.73
Market3Clip4000r2 10.17 0.95
Tibul2Clip4000r1 7.60 0.02

class B AutoWelding 11.25 0.12
BikeSparklers 11.33 0.02

class C ShowGirl2Teaser 6.28 0.05
class D StEM MagicHour 7.22 0.03

StEM WarmNight 8.53 0.04
class G BalloonFestival 7.71 0.05

Overall 8.44 0.22

For HDR material, no single metric has a role similar to PSNR for SDR content.
Instead we report two metrics from Luthra et al.; tPSNR-Y for luminance and deltaE
for chrominance. In Table 1 the uncompressed results for BT.709 material in a
BT.709 container is shown. Here we see a large increase in luminance quality mea-
sured as tPSNR-Y of over 17 dB on average, and over 20 dB for one sequence. Also
the deltaE result is improving. Table 2 shows the uncompressed results for BT.709
material or P3 material in a BT.2020 container. Here the gains are less pronounced,
since no colors directly on the gamut edge are available, but the tPSNR-Y improve-
ment is still 8 dB on average and over 11 dB for some sequences. The deltaE measure
improves marginally. Note that with true BT.2020 material, we expect the gains to
be more similar to those in Table 1.

References

[1] S. Miller, M. Nezamabadi and S. DalyJ, “Perceptual Signal Coding for More Efficient
Usage of Bit Codes,” Motion Imaging Journal, 122:52–59, 2013.

[2] E. Francois, Not public: “MPEG HDR AhG: about using a BT.2020 container for
BT.709 content,” 110th MPEG meeting in Strasbourg Compression Conference, Stras-
bourg, France, October 2014.

[3] A. Luthra, E. François, W. Husak, “Call for Evidence (CfE) for HDR and WCG Video
Coding”, MPEG2014/N15083, 110th MPEG Meeting, Geneva, 2015.

[4] CIE (1932), “Commission internationale de l’Eclairage proceedings,” 1931. Cambridge:
Cambridge University Press.

[5] ITU-R, “Reference electro-optical transfer function for flat panel displays used in HDTV
studio production,” Recommendation ITU-R BT.1886, 03/2011

[6] ITU-R, “Parameter values for ultra-high definition television systems for production
and international programme exchange,” Recommendation ITU-R BT.2020-2, 10/2015

[7] ISO/IEC 23008-2:2015, “Information technology – High efficiency coding and media
delivery in heterogeneous environments – Part 2: High efficiency video coding”, 2015


