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Abstract
A real-time system for tracking and modeling of

faces using an analysis-by-synthesis approach is pre-
sented. A 3D face model is texture-mapped with a
head-on view of the face. Feature points in the face-
texture are then selected based on image Hessians. The
selected points of the rendered image are tracked in the
incoming video using normalized correlation. The re-
sult is fed into an extended Kalman �lter to recover
camera geometry, head pose, and structure from mo-
tion. This information is used to rigidly move the face
model to render the next image needed for tracking.
Every point is tracked from the Kalman �lter's esti-
mated position. The variance of each measurement
is estimated using a number of factors, including the
residual error and the angle between the surface nor-
mal and the camera. The estimated head pose can be
used to warp the face in the incoming video back to
frontal position, and parts of the image can then be
subject to eigenspace coding for e�cient transmission.
The mouth texture is transmitted in this way using 50
bits per frame plus overhead from the person speci�c
eigenspace. The face tracking system runs at 30 Hz,
coding the mouth texture slows it down to 12 Hz.

key words: face tracking, modeling, real-time,
EKF, analysis by synthesis

1 Introduction
Automatic tracking and modeling of human faces

from image sequences is an important and challeng-
ing task in computer vision. Applications include face
recognition, model-based coding for video conferenc-
ing, avatar control and computer graphics.

The goal of this paper is to describe a real-time
system for simultaneous tracking and 3D modeling.
The core idea is to select a dense set of feature points
(essentially, optical ow at all the most information
bearing points), thus extending the foundations of
Azarbayejani and Pentland [3] and Jebara and Pent-
land [8] to achieve robust performance. Figure 1 illus-
trates how the system works. Patches around the fea-
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Figure 1: Patches from the rendered image (lower left
corner) are matched with the incoming video. The
2D feature point trajectories are fed through the SfM
extended Kalman �lter that estimates the pose infor-
mation needed to render the next model view. For
clarity, only four of the twelve patches are shown.

turepoints taken from the rendered 3D model (lower
left corner) are matched against the incoming video,
and the 2D trajectories of these featurepoints are then
fed through a structure from motion (SfM) algorithm
to update the pose information of the 3D model. In
addition, the estimated structure serve as a starting
point for the tracking. The 3D model helps in several
ways. First, it compensates for rotation and scale,
making it possible to use fast 2D block-matching to
track the feature points. Second, it helps in gauging
how reliably a certain feature point can be tracked.
For instance, a feature point close to the model's edge
is hard to track and a feature point on the back side
of the model cannot be tracked at all. The estimate
of the reliability of a point can then be forwarded to
the SfM Kalman �lter as a variance of the 2D block-
matching measurement. Third, the model can be used
to normalize the pose of the incoming image, making
it possible to use an eigen-representation on the parts
of the image. An important fourth aspect is the pos-
sibility to incrementally update the 3D structure and



the texture of the model until a full 3D textured head
model is recovered. Note that in this formulation, the
model is dynamically varying, not static. By tracking
features on the side of the head during large out-of-
plane rotations, this can potentially make the system
a lot more robust.

The extended Kalman �lter provides a convenient
mechanism for fusing all the information about the re-
liability of the measurements into an estimate of the
3D structure, the pose and the focal length of the cam-
era. In this work, the 3D structure estimate is used as
a starting point for the 2D block-matching. However,
the idea is that it should be used to regress the 3D
model to better match the individual head structure.

1.1 Previous Work
The SfM algorithm used in this work is taken from

the work of Azarbayejani and Pentland [3]. One of the
applications presented therein is a head tracker that
recovers the focal length of the camera as well as the
motion and the structure of six feature points.

Our work is closely related to the real-time sys-
tem developed by Jebara and Pentland [8], where 2D
correlation trackers are used to feed the SfM �lter.
As in this paper, the estimated 3D structure provides
a starting point for the 2D-correlation trackers, and
the residual error is used to estimate the variances of
the measurements. Jebara and Pentland's work di�ers
from the one presented here in two important ways.
First, the system in [8] tries to �nd the same points
to track in each face (namely the eyes and the cor-
ners of the mouth and nose) whereas our system tries
to pick the best points to track for each face. Sec-
ond, Jebara and Pentland's system works by tracking
2D patches in 3D by deforming them a�nely. Occlu-
sion are treated as a high-noise measurement, since no
information about geometric occlusion exists. In con-
trast, our work relies on a 3D model that is directly
compared to the input image.

Many authors in the model-based coding area es-
timate the motion parameters of a 3D polygon head
model using the optical ow between the synthesized
image and the input video [2][15][19]. A simliar ap-
proach is presented in [4] where di�erential optical
ow is used to rigidly move an ellipsoidal head model.
However, the above-mentioned methods need a cali-
brated focal length in order to work. Another draw-
back is that they, in order to gain robustness, gather
measurements from a large number of points. This
makes it hard to reach real-time performance. Also,
since optical ow can be measured accurately only in
regions which contain edges, it seems wasteful to in-
clude optical ow from edge-free regions into the cal-
culation. This has inspired us to carefully select only
the points where we believe there is edge information
enough to allow tracking.

1.2 Overview
The next section will discuss the initialization of

the system, and how the feature points are selected. In
Section 3, the 2D correlation tracking is described, and
the structure from motion �lter is briey discussed in
Section 4. The coding of the mouth region is described
in Section 5. Results are presented in Section 6, and

Section 7 discusses how we plan to make full use of
this framework in the immediate future.

2 Initialization
The system is initialized from a frontal position as

seen in Figure 2. A generic polygonal face model1 [16]
(left) is aligned to match with a head-on view of the
face in the video sequence (middle). The pixels from

Figure 2: A generic 3D polygonal head model is
aligned with a head-on shot of the video sequence,
and the corresponding pixels are texture mapped to
the surface of the face model.

the video are then texture-mapped onto the model
(right). Jebara and Pentland [8] present a fully au-
tomatic scheme to align a 3D model with a face in the
video input. Our system uses part of their scheme to
permit a semi-automatic alignment; the biggest skin-
colored blob in the image is found and the 3D model
is aligned to it. The user has to make sure that she/he
is in a frontal position before initiating tracking.

After alignment has been performed, the system se-
lects which feature points to use. The part of the video
input containing the face is cropped out (�rst image
of Figure 3) and further processed. The reason why

Figure 3: From left: The lowpass �ltered incoming
video, the weighting (the cosine of the angle between
the surface normal and the camera direction), the �nal
rating and the extracted feature points.

the video data is used and not the rendered 3D-model
is that the discontinuities at the edges of the model
will complicate the calculation of the image gradients.
The cropped image is lowpass �ltered and subsampled
once to avoid locking on to features that are too vague

1The 3D model is a modi�ed version of candide



to be reliably tracked. The determinant of the Hes-

sian 1

4

���� Ixx Ixy
Ixy Iyy

���� is calculated in every point. To

avoid selecting points on parts of the face surface per-
pendicular to the camera, the determinant is weighted
with the cosine of the angle between the surface nor-
mal and the camera direction. These values can easily
be obtained from the computer graphics hardware by
rendering a grayshade version of the 3D model with
lighting from the camera direction (Figure 3, second
image). The resulting rating of each pixel is shown
in the third image in Figure 3, where brighter pix-
els indicate a higher score. The twelve points with
the highest ratings are then selected with a minimum-
distance constraint between points. In detail, a sorted
linked list with the 200 highest-rating pixels are cre-
ated. The highest scoring pixel is chosen as a feature
point, and all elements in the list closer to this point
than the minimal distance are removed. This process
is repeated twelve times. The fourth image in Fig-
ure 3 shows the twelve points selected. Each point is
given a 3D position on the surface of the 3D model.
Again, the computer graphics hardware can be used,
this time reading out the value of the depthbu�er of
the rendered image in the corresponding pixel loca-
tion, to calculate the depth of the feature point.

3 Tracking
As shown in Figure 1, the tracking is carried out be-

tween the rendered frame and the video input. Both
images (or rather, the relevant parts of them) are sub-
sampled in order to track larger and more robust fea-
tures. Since the feature points are �xed with respect
to the 3D model, their 2D coordinates in the ren-
dered image are known. A 7 � 7 pixel patch around
each feature point is cropped out. This patch is then
matched with patches from the video input image in
a 11 � 11 pixel search window using normalized cor-
relation. More speci�cally, if a and b are the vectors
obtained by raster-scanning the patch in the rendered
image and the video input respectively, then the b̂
that maximizes

� = cos(�) =
â � b̂

kâkkb̂k
(1)

is selected, where â = a � �a, b̂ = b � �b, and k � k
represents the norm. The search window is centered
around the position that is estimated from the struc-
ture from motion algorithm. An exhaustive search is
carried out in the search window and the candidate
with the lowest error is selected.

3.1 Subpixel Re�nement
Since the two images were subsampled before

matching, the accuracy of the tracking is only �1
pixel. However, since an exhaustive search was per-
formed over the search window, the error is known
in the adjacent positions. By approximating error
derivatives with central di�erences, the error surface is
approximated by a second degree Taylor polynomial.

The (sub-pixel) location of the minimumof the result-
ing paraboloid is then used as the feature location. If
the error surface is very irregular however, the mini-
mum of the paraboloid can be outside the 2� 2 pixel
area. In this case the Taylor polynomial is a bad ap-
proximation of the error surface and the centroid of
the 2 � 2 pixel area is used instead. Since the rough
error surface might indicate that the point is o� track,
the variance for such a point is multiplied by 2 in the
implementation.

3.2 Variance Estimation
The variance of a point can be made dependent on

a number of di�erent cues. For instance, if a feature
point is occluded in the rendered image, we want the
Kalman �lter to discard that measurement. This can
be done by setting the variance for that feature point
to a high value in that time step. In the implemen-
tation occlusion is detected and corresponding feature
points get a variance of 10000.

In addition, the variance is a function of the angle
' between the surface normal of the feature point and
the camera direction. A small angle corresponds to an
easily measurable head-on shot and should generate
a low variance, whereas larger angles should map to
higher variance. We scale the variance with 20([1 �
cos(')]2 + 0:2).

Moreover, following [8], the variance is also inu-
enced by the error from the normalized correlation.
The idea is that a large error (small �) is produced
when a feature point is far o� the correct position,
and thus the variance should increase. There are po-
tential problems with this approach, e.g., an almost
at patch in a similar surrounding can move substan-
tially without the error increasing much. Conversely,
a rugged patch can produce a large error even if only
moved slightly. However, since the feature points were
selected on the basis of large Hessians, there is reason
to believe that these types of problems should not oc-
cur. In order to estimate the mapping from � to the
variance, a number of test images depicting faces were
used. Feature points were extracted the same way as
described in Section 2. Patches around these feature
points were then translated and the normalized corre-
lation coe�cient � was measured. For each distance,
the mean � was then calculated, resulting in the solid
curve in Figure 4. In the implementation, the variance
is made proportional to �4�+4:2 which is the dashed
curve in the same graph.

Finally, it is possible to use the shape of the Taylor
paraboloid mentioned in Section 3.1 to estimate the
covariances between the x and y measurements. For
instance, a vertical line segment (such as the mouth)
yields a very accurate measurement in the y direction,
but a poor measurement in the x direction. The cor-
responding Taylor paraboloid 1

2
xTHx+Cx+D of the

error surface will then be elongated in the x direction.
On this error paraboloid, the error will be constant
on certain ellipses. By choosing the covariance matrix
� = H�1 these ellipses will be iso-probability contours
for a Gaussian. In the implementationwe estimate the
�nal covariance matrix as I�2+� where �2 is the vari-
ance estimated using the above-mentioned methods.
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Figure 4: The solid curve is the mean � for a cer-
tain perturbation distance over a set of testing feature
points. The dotted line shows the linear function used
in the implementation to map � to the variance.

4 Structure from Motion
Recently, structure from motion has been reformu-

lated into a stable recursive estimation problem and
been shown to converge reliably [3]. By remapping the
data into a new parameterized representation, what
was essentially an under-constrained problem becomes
uniquely solvable with no numerical \ill-conditioning".

4.1 Stable Representation for Recursive
Estimation

The objective of SfM is to recover 3D structure,
motion and camera geometry. These form the \inter-
nal state vector," x, of the system under observation.
These internal states are to be recovered by obser-
vation measurements of the system. For a thorough
justi�cation of the internal state vector representation,
consult [3]. One internal state parameter is the camera
geometry. Instead of trying to estimate focal length to
describe the camera, we estimate � = 1

f
. The struc-

ture of points on the 3D object is represented with
one parameter per point instead of an XYZ spatial lo-
cation. The mapping from this 3 Cartesian form to
one parameter is described in Equation 2 where � is
the new representation of structure and u and v are
the coordinates of the point in the image plane when
tracking is initialized."

X
Y
Z

#
=

"
(1 + ��)u
(1 + ��)v

�

#
(2)

The relation is illustrated in Figure 5. In addition, we
de�ne translation as (tX ; tY ; tZ�). Rotation is de�ned
in terms of (!X ; !Y ; !Z) which are the incremental
Euler angles for the interframe rotation. This rep-
resentation of rotation overcomes the normality con-
straints of the quaternion representation by linearizing

(0, 0, -f)

COP

(X,Y,Z)

3D location

Image Plane

Image 

X

Z

αf

(u, v, 0)

Location

Figure 5: Model of central projection; the coordinate
center is placed at the image plane rather than at the
center of projection.

with a tangent hyper-plane on the unit hyper-sphere
formed by the quaternion representation.

The �nal representation of the internal state vector
has a total of 7+N parameters where N is the number
of feature points being tracked (each of which requires
a scalar depth value to determine 3D structure):

x = (tX ; tY ; tZ�; !X ; !Y ; !Z; �; �1; �2; : : : ; �N ) (3)

At each time step, we also have a measurement or ob-
servation vector y of size 2N with the following form:

y = (X1; Y1; X2; Y2; : : : ; XN ; YN ) (4)

where (Xi; Yi) are the positions of a feature point cur-
rently being tracked in the image. Unlike other for-
mulations which are underdetermined at every time
step, the above parametrization of the SfM problem is
well-posed when 2N � 7 + N or when N � 7. Thus,
if 7 or more feature points are being tracked in 2D si-
multaneously, a unique, well-constrained solution can
be found for the internal state and a recursive �lter
can be employed.

4.2 Entering the Variance Estimates
Following [8], recall that Kalman �ltering uses a

noise covariance matrix to describe the expected noise
on input measurements. Traditionally, the noise co-
variance matrix is denoted R and is n�n where n is the
number of measurements in the observation vector y.
The role of R in the computation of the Kalman gain
matrix is described by Equation 5. Adaptive Kalman
�ltering [6] proposes the use of a dynamically varying
R matrix that changes with the arrival of new ob-
servation vectors to model the con�dence of the new
data. By changing R using the techniques described
in Section 3.2, we can assign a weight on the observa-
tions and end up with a more robust overall estimate
of internal state. The update equation for the Kalman
gain is:

K = P�HT [HP�HT +R]�1 (5)



5 Coding
Principal Component Analysis

(PCA), or eigenspace analysis, has proved to provide
a powerful tool for analysis and representation of face-
as well as lip images [17] [10] [18] [12] [5]. Moghaddam
and Pentland has demonstrated a model-based coding
scheme for head-on images [11].

In our implementation we have chosen to include
a \zeroth-order image coder", that reconstructs the
tracked face using the head pose information, the
texture of the �rst image plus the real-time texture
around the mouth region. The idea is to show a
low bit rate, model-based coder operating in real time
(12 Hz).

Using the 3D head pose information from the
tracker, it is possible to warp back the face to a frontal
position. Figure 6 shows an example of this: The orig-
inal image (a) is tracked (b), and it's texture is then

a b

c
d

Figure 6: The original image (a) is tracked (b), and
the pose information is used to warp the image to a
head-on shot (c). From this image, a 36 � 28 pixel
mouth-chip is cropped out (d).

warped back to a frontal pose (c). From this pose-
normalized image it is reasonable to do projection onto
an eigenspace.

A 36�28 pixel mouth chip is cropped out from the
warped-back incoming video (Figure 6d). Since the
human vision system is more sensitive to di�erences
in luminance than in chrominance, the mouth chip
is converted from RGB to YCrCb; the chrominance
components Cr and Cb are subsampled by a factor of
two, thus diminishing their impact on the eigenspace
analysis. The mouth chip is then encoded using an
eigenspace constructed from mouth-chip images ob-
tained the same way. The ensemble mean (�rst im-
age in Figure 7) is subtracted from the image and the
residual is projected onto the eigenvectors (the �rst
six are shown next to the mean image in Figure 7).

Figure 7: The mean image (extreme left) followed by
the �rst six eigenimages.

Each coe�cient is then quantized by dividing it by
its standard deviation (the square-root of the corre-
sponding eigenvalue) and encoded using a Lloyd-Max
quantizer for a Gaussian source. The number of bits
used to quantize a coe�cient increases with the size of
the corresponding eigenvalue. Twelve coe�cients are
used, and a total of 50 bits is used in the quantization.

The eigenspace is trained on images from the same
person, but from a di�erent sequence. The eigenvec-
tors and eigenvalues must thus be transmitted to the
decoder in order for it to be able to reconstruct the
images. By quantizing the eigenvectors to 8 bits and
compressing them losslessly with gzip, this data can
be sent at around 17000 bytes. The �rst texture must
also be sent (e.g. using JPEG) adding another 7000
bytes to the startup cost of a call. Each additional
frame requires a mere 98 bits of information; 50 bits
for the eigencoe�cients and 48 bits of motion infor-
mation (each degree of freedom quantized to 8 bits).
A �ve minute conversation at 12 Hz would thus result
in a data rate of about 1.8 kbit/s. Figure 8 shows
examples of the mouth-chip coded this way.

Figure 8: Top row: original images. Bottom row:
coded with 50 bits per mouth.

6 Results
The tracking system was implemented in real time

on a SGI O2 workstation. The feature point �nding
algorithm (executed once at the start of the tracking
process) took about 100 ms, and the rest of the track-
ing was running at 30 Hz. In Figure 9 a few frames
from a longer sequence (track.mpg) are shown. The
two side views (�rst and third from the top) show ap-
proximately how much out-of-plane rotation the sys-
tem can currently cope with without loosing track
(about �20o). The time duration of the sequence is
about 12 seconds.



Figure 9: Left column: frame number 35, 121, 164 and
184 of a sequence. Right column: tracked and coded
result.

The system is robust to occlusion of a small number
of the feature points by, e.g., a �nger. These points
will have a much large error and will thus be disre-
garded by the extended Kalman �lter.

One problem was that the lighting of the mouth
patch (taken from the live video and then coded) dif-
fered from the lighting in the rest of the face (always
represented by the static texture taken from the �rst
head-on image) when the head was turned. This was
solved by sampling the training mouth-patches from
head-on views only. Thus the eigenspace could not
span di�erent lighting variations and the mouth-patch
would always be consistent with the rest of the face.
A more elegant solution to this would be to let the
mouth-chip keep its correct lighting and change the
lighting of the static texture according to some light-
ing model.

The resulting bit rate of 1.8 kbit/s (1.2 kbit/s if dis-
regarding the initial transmission of the database and
the �rst image) is comparable to the MPEG-4 facial
animation standard bit stream (0.5 - 1 kbit/s) [1] [7]
[13] [14]. However, some of the parameter compression

schemes used in the MPEG-4 standard could be ap-
plied here as well, for instance arithmetic or temporal
DCT coding of the motion parameters.

7 Future Directions
The work presented in this paper is work in progress

and the list of things to add to the system is long.
However, the most important additions lie on the
modeling side. A �rst step would be to apply 3D-
regression to the 3D structure estimates, thus obtain-
ing a dense, 360o 3D model. Jebara and Pentland esti-
mated structure from texture using an eigenspace built
from 3D cyberware scans [9], and the same method-
ology can be used here to estimate overall structure
from pointwise structure. This generic 3D model can
then be updated on-line and allow for more accurate
tracking, and allow a dynamic estimate of the struc-
ture.

The next big step is to adaptively acquire texture
from other points of view than head-on, and extracting
new feature points in these areas. This can lead to
signi�cantly improved performance for large out-of-
plane rotations.
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