
Graphics Hardware (2006)
M. Olano, P. Slusallek (Editors)

High Quality Normal Map Compression

Jacob Munkberg1 Tomas Akenine-Möller1 Jacob Ström2

1Lund University 2Ericsson Research

Abstract
Normal mapping is a widely used technique in real-time graphics, but so far little research has focused on com-
pressing normal maps. Therefore, we present several simple techniques that improve the quality of ATI’s 3Dc
normal map compression algorithm. We use varying point distributions, rotation, and differential encoding. On
average, this improves the peak-signal-to-noise-ratio by 3 dB, which is clearly visible in rendered images. Our
algorithm also allows us to better handle slowly varying normals, which often occurs in real-world normal maps.
We also describe the decoding process in detail.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Texture

1. Introduction

Bump mapping [Bli78] is a widespread technique which
adds the illusion of detail to geometrical objects in an in-
expensive way. More specifically, a texture, called a bump
map or normal map, is used at each pixel to perturb the sur-
face normal. A common approach to generate normal maps
is to start with a high polygon count model and create a low
complexity model using some geometrical simplification al-
gorithm (see, for example, Cohen et al’s work [COM98]).
The “difference” between these two models is then “baked”
into a normal map. For real-time rendering, the normal map
is applied to the low complexity model, giving it a more de-
tailed appearance. These techniques are heavily used in re-
cent games.

A possible disadvantage is that the savings in transform
and rendering due to the lower vertex count is translated
into an increase in bandwidth usage of textures (normal
maps). A traditional technique to alleviate this problem is
lossy texture compression (TC), which was introduced in
1996 [BAC96,KSKS96,TK96]. TC developed primarily for
color can also be applied to normal maps [Gre04], but the
quality can be higher if specialized algorithms are devel-
oped. One such technique, called 3Dc, has been proposed
by ATI [ATI05].

However, little effort has been spent on developing new
algorithms for normal map compression. One problem with
3Dc is that it cannot handle slowly varying normal maps
well. This is illustrated in Figure 10. In this paper, we de-

velop several variations and extensions of 3Dc that perform
much better on average, and handle slowly varying data par-
ticularly well. We present visual proof showing that our nor-
mal mapping algorithms give higher quality renderings, and
we also show that the peak-signal-to-noise ratio (PSNR) is
improved.

2. Previous Work

The first example of normal compression in graphics that
we know of is described in the context of geometry com-
pression [Dee95], i.e., it was not targeted towards normal
map compression. Deering presents a method for compress-
ing surface normals, arguing that about 100,000 normals dis-
tributed over the unit sphere would give sufficient quality.
These normals can be represented by a single 17-bit index,
and by exploring symmetries on the sphere, only a 1/48 of
the sphere needs to be represented. A regular grid in the an-
gular space of one such patch is used as sample distribu-
tion. Nearby normals are encoded differentially. With these
techniques he manages to compress a normal to about 12
bits. However, the decompression step includes a number of
trigonometric operations and is quite costly compared to the
schemes described below.

2.1. 3Dc Normal Compression

Next, we will review ATI’s normal map compression scheme
called 3Dc [ATI05]. As far as we know, this is the only for-
mat dedicated to this purpose alone.

c© The Eurographics Association 2006.



Munkberg, Akenine-Möller, and Ström / High Quality Normal Map Compression

X
Y

Z

X

Y

(x,y)

n=(x,y,z)

Figure 1: 3Dc selects a rectangle in the xy-plane (left), and
places 8×8 points uniformly over this rectangle (in this fig-
ure, only 4× 4 points were placed to make the illustration
clearer). These points can be seen as a “palette” of xy pairs,
and each texel in a 4× 4 tile can select one of these pairs.
To the right, one such (x,y)-point has been used to generate
a normal, n = (x,y,z). This is done by requiring that we use
unit normals.

In the majority of cases today, bump mapping is per-
formed in local tangent space, (X ,Y,Z), of each rendering
primitive (e.g. a triangle). Since the length of the normal is
not of interest, 3Dc uses units normals, and hence it suffices
to compress the x- and y-components. The third component
is obtained through normalization:

z =
√

1− x2− y2, (1)

and this computation can either be done in the pixel shader,
or by special purpose hardware.

The x- and y-components are compressed independently
using a variant of S3TC/DXTC [INH99]. A block of 4× 4
texels (a.k.a. a tile) is compressed into 128 bits, i.e., at eight
bits per pixel (bpp). The x-coordinates are encoded in the
following way. Two eight-bit values, xstart and xstop, rep-
resenting an interval enclosing the x-values in the tile, are
found. Each texel can select from eight different x-values:
xk = xstart + k(xstop− xstart)/7, k = 0 . . .7, which are thus
spread uniformly over the interval. This requires three bits
per texel. To encode the x-values of a tile, we need 2×8 bits
for xstart and xstop, and 16× 3 bits for the per-pixel indices.
This sums up to 64 bits. The y-components are encoded in
the same way, and the total cost per tile is 128 bits. An illus-
tration of 3Dc is shown in Figure 1.

3. Improved Normal Compression

In the following three subsections, we present three simple
general techniques for improving the quality of the 3Dc nor-
mal compression scheme. These are combined into a single
compression format in Section 4, while keeping a bit budget
of 8 bits per pixel (bpp). Compared to 3Dc, the extra cost is
a more expensive decompression phase (Section 4.1).

First, however, we will explain how we can incorporate
three new modes into 3Dc. It stems from the fact that swap-
ping the values xstart and xstop will produce exactly the same

0 1
0

1

0

1

0

1

Figure 2: By rotating the coordinate frame, we can often find
a much tighter bounding box. This will improve the encoding
precision.

reconstruction levels x0 . . .x7, albeit in the reversed order.
Since these two representations are equivalent, it is possible
to signal one extra bit, b: If xstart < xstop, then b← 0, else
b← 1. The same trick is used in DXT1 to signal whether
a block is RGB or RGBA, and we call this trick the order-
ing technique. In 3Dc, the ordering technique can be used on
both x and y, and hence two extra bits can be used.

3.1. Rotation Compression

When the major axis of a minimal box around the (x,y)
points of a tile do not coincide with either the x- or the y-
axis, the quality of 3Dc decreases. By rotating the coordi-
nate frame, a much tighter fit can be obtained, and the extra
storage cost is only an angle per block. Figure 2 illustrates
this scenario. For example, using a single extra bit, one can
select to use an angle in the set {0,π/4}, and two bits in-
crease the set to {0,π/8,π/4,3π/8}. Note that the standard
3Dc case is included, thus, this technique can only achieve
results equivalent to or better than 3Dc. As seen in Figure 3,
the peak-signal-to-noise-ratio (PSNR) improves with more
than a decibel on average, already with a set of three angles.
Visual results are shown in Section 5.

3.2. Variable Point Distribution

Normally, the 3Dc technique places the sample points uni-
formly in a grid over the axis-aligned box defined by
(xmin,ymin) and (xmax,ymax), where xmin = min(xstart ,xstop),
xmax = max(xstart ,xstop), and ditto for ymin and ymax. How-
ever, other distributions may allow for better compression.
A simple way of altering the sample distribution is to use
different distributions depending on the aspect ratio of the
box. For example, if the box is more than twice as wide
as it is high, then it could be beneficial to use a 16× 4-
distribution rather than the standard 8× 8-distribution. See
Figure 4. No extra bits are needed to signal this, since the
point distribution is automatically triggered by the aspect ra-
tio, a = ymax−ymin

xmax−xmin
, of the box. For 3Dc, the per-texel indices

are encoded in six bits (3+3 bits for an (x,y) pair). However,
if the aspect ratio triggers, say, the distribution 2× 32, we

c© The Eurographics Association 2006.



Munkberg, Akenine-Möller, and Ström / High Quality Normal Map Compression

38.0

38.5

39.0

39.5

40.0

0 1 2 3 4 5 6 7 8

PS
N

R 
(d

B)

Figure 3: The average PSNR for a set of 20 normal maps
as a function of the number of angles in the compressor. An-
gle count 1 represent no rotation, 2 represent the two angles
{0, π

2} and generally, for an angle count a, the set of angles

is {0, π

2a , ...,
π(a−1)

2a }.

2 x 32 4 x 16 8 x 8 16 x 4 32 x 2

Figure 4: Different point distributions are triggered auto-
matically dependent on the aspect ratio, a = ymax−ymin

xmax−xmin
, of the

bounding box.

aspect ratio (a = ymax−ymin
xmax−xmin

) distribution (dx×dy)
a < 1/8 32×2

1/8≤ a < 1/2 16×4
1/2≤ a≤ 2 8×8

2 < a≤ 8 4×16
a > 8 2×32

Table 1: The bounding box aspect ratio automatically se-
lects a point distribution.

simply move two bits, 3+3→ 1+5. It should be noted that
this approach cannot guarantee higher quality in all cases.
We have tested this technique on a set of 20 normal maps,
with improved PSNR values on all maps. The bounds for
selecting a distribution were chosen empirically and are pre-
sented in Table 1. The distributions 1×64 and 64×1 did not
improve the quality, and are not used in our compressor.

3.3. Differential Encoding

One of the case where it is easy to detect compression ar-
tifacts is in areas that have a slight curvature, for example,

a
b c

d

x

Figure 5: The x-axis is shown with quantized values marked
with bold vertical lines. Left: a is the desired interval, but
the smallest interval representable in 3Dc is b. Right: With
values on both sides of a quantized value, the smallest inter-
val in 3Dc that covers the desired interval c is d, twice the
size of the smallest representable interval b.

on a car hood. The smoothness of the surface makes it easy
for the viewer to predict what the image “should” look like,
which is not as simple for a rough surface.

Compressing such slow varying normals with 3Dc poses
two problems. First, the smallest representative interval is
too wide. Since the quantized resolution is only eight bits,
an interval of 1/255 of the range might be to coarse for
representing nearly constant normals (see Figure 5a and b).
Second, the smallest interval cannot be placed accurately
enough, as the interval limits must coincide with the quan-
tization steps. Thus, if values of a block are present on both
sides of a quantized step (Figure 5c), the smallest interval
covering all values will be at least twice the minimum inter-
val (Figure 5d) . In this section, we will present a technique
to make the precision higher in order to solve these to prob-
lems.

Our idea is to use the 32 bits that are normally used for
storing xstart , xstop, ystart and ystop in a different way, with an
encoding that is specialiced for representing small intervals
accurately. However, we must be able to flag this mode of
encoding, so some bits are irretrievably lost. Using a simple
mapping technique described in the next paragraph, we can
exploit 30 bits for a differential mode that handles slowly
varying normals. In this mode, we use eleven bits each to
encode xmin and ymin using 8.3 (eight bits for the integer part
and three bits for the fractional part), and we spend four bits
each on two delta values, ∆x and ∆y, using 2.2 bits. xmax is
calculated as xmax = xmin +∆x, and ditto for ymax. Due to the
differential coding, we call this mode the differential mode,
and it addresses both problems identified above: the smallest
representable interval is now four times smaller, and since
the precision of the location of the interval (3 fractional bits)
is twice that of the smallest length (2 fractional bits), we
can handle values on both sides of a border as in Figure 5c
without doubling the interval.

In the following, we will present a general method use-
ful when exploiting the ordering technique (see beginning
of Section 3). Assume that we have detected a special mode
signaled by xstart ≥ xstop. Unfortunately, we cannot set the
bits of xstart and xstop arbitrarily, since xstop must be less
than or equal to xstart . We thus want to solve the problem
of exploiting a maximum number of the sixteen bits occu-
pied by xstart and xstop, while preserving xstart ≥ xstop. This

c© The Eurographics Association 2006.



Munkberg, Akenine-Möller, and Ström / High Quality Normal Map Compression

xstart

0 1 2 3 4 5 6 7
xstop 0 0 1 2 3 4 5 6 7

1 9 10 11 12 13 14 15
2 18 19 20 21 22 23
3 27 28 29 30 31
4 x 26 25 24
5 x 17 16
6 x 8
7 x

Table 2: By mirroring the positions for number 8, 16, 17,
24, 25 and 26, it is possible to fit the numbers 0 through
31 without using positions where xstart < xstop (marked with
black).

can be solved by a simple mapping, illustrated in Table 2,
where xstart and xstop are 3-bit values instead of 8-bit val-
ues for simplicity. Here, we have entered the numbers 0
through 31 into the table, while avoiding the black boxes
where xstart < xstop. The numbers are entered row-by-row,
except for the numbers which would have fallen in the for-
bidden positions, namely numbers 8, 16, 17, 24, 25 and 26.
The positions for these numbers are therefore mirrored both
in the vertical and horizontal direction relative to the center
of the table. As can be seen, we have stored 32 numbers,
and we can therefore extract five bits. This is the maximum
number of bits we can obtain since roughly half the values
are marked with black.

Decoding this 5-bit number is especially simple for the
upper half (rows 0 through 3) using

value = (xstop << 3) OR xstart ,

where << represents a left shift and OR is the bit-wise log-
ical OR operator. For the lower half (rows 4 through 7),
we have to mirror xstart and xstop first to (7− xstart) and
(7− xstop), which is the same as inverting their bits, and we
can use

value = (NOT(xstop) << 3) OR NOT(xstart),

where NOT(·) denotes bit-wise inversion. For eight bit x-
values, we shift with 8 instead of 3, and we can store 15 bits
in value. Encoding is straightforward—we use the lower part
of value for xstart and the upper part for xstop, and invert both
if xstop > xstart according to the pseudocode below:

xstart = value AND 0xff
xstop = (value » 8) AND 0x7f
if xstop > xstart

xstart = NOT(xstart)
xstop = NOT(xstop)

end

where NOT operates on all eight bits.

4. Proposed Scheme

In this section, we will combine the three techniques de-
scribed above into a format that fits in an 8 bpp budget. The

foundation for our combined mode is 3Dc, but we exploit re-
dundancy in its encoding to allow for more modes. Next, we
will describe how these two extra bits can be used to improve
the quality of 3Dc substantially.

We allow two rotations and limit the differential mode to
tiles where both the x- and the y-components can be encoded
differentially. Altogether, we have four different modes: I)
the standard 3Dc mode, II) a rotation with 30 degrees, III)
a rotation with 60 degrees, and IV) a differential mode, en-
coded with 8.3 + 2.2 bits. As seen in Figure 3, using three
angles gives a significant improvement in quality. It would
be possible to add yet another angle, but that mode is more
wisely spent on the differential mode in terms of PSNR. The
variable point distribution is applied to all modes except the
differential one where it did not increase quality. Table 4
shows the quality contribution that each technique adds on
a test series. The usage of each mode is further illustrated in
Figure 6, showing how often the different modes are used for
each test image. All modes are used quite frequently, which
indicates a balanced algorithm.

Note that mode I differs slightly from 3Dc in that it uses
variable point distribution. Alternatively, it is possible to
avoid using variable point distribution in mode I. This would
mean that existing 3Dc hardware designs could be reused to
decode this mode. Maybe more important, it would allow ex-
isting 3Dc textures to be transcoded to our new format with-
out loss, by swapping xstart and xstop if xstart > xstop (and
performing bit-wise NOT on the per-pixel indices to reflect
the inverted ordering). However, this backward compatibil-
ity would come at a cost: On the test images of Section 5,
the average PSNR for this alternative solution is about 1.3
dB lower than the proposed scheme.

4.1. Decoding

The decoding of a block is performed as follows:

mode X Y bits vpd
I: rot 0◦ xstart < xstop ystart < ystop 8+8 yes
II: rot 30◦ xstart ≥ xstop ystart < ystop 8+8 yes
III: rot 60◦ xstart < xstop ystart ≥ ystop 8+8 yes
IV: diff xstart ≥ xstop ystart ≥ ystop 8.3+2.2 no

Table 3: The encoding modes for the combined normal com-
pressor. vpd indicates “variable point distribution.”

mode PSNR (dB)
3Dc 36.4
3Dc + Point Distr. 37.5
3Dc + Point Distr. + Rot 38.8
3Dc + Point Distr. + Rot + Diff 39.4

Table 4: The average PSNR for the normal maps presented
in Figure 8.

c© The Eurographics Association 2006.



Munkberg, Akenine-Möller, and Ström / High Quality Normal Map Compression

0%

20%

40%

60%

80%

100%

bu
m

py ca
r

do
t1

do
t2

do
t3

do
t4

lu
m

py

m
et

al

N
or

m
al

M
ap

on
et

ile

tu
rt

le

vo
ro

no
i

sl
ow

M
ap

bu
lg

e1
0

m
ul

tiB
ul

ge st
ar

bo
xe

s

to
ru

s

sk
in

ba
rr

el

A
V

E
R

A
G

Edi�
rot 60
rot 30 
rot 0

Figure 6: The frequencies of the different algorithms for the
images used in the test.

1. First, xstart , xstop, ystart and ystop are tested to see which
mode the block belongs to, according to Table 3. For in-
stance, if xstart < xstop and ystart ≥ ystop, then mode III is
selected.

2. The next step is to calculate xmin and xmax. For
modes I through III, this is simply done using xmin =
min(xstart ,xstop) and xmax = max(xstart ,xstop), and like-
wise for ymin and ymax. All resulting numbers will be be-
tween 0 and 255. For mode IV, the 15-bit value is first cal-
culated from xstart and xstop as described in Section 3.3.
Then, the first eleven bits of value are used to decode
xmin in format 8.3, i.e., with eight bits for the integer part
and three for the fractional part, resulting in a number be-
tween 0 and 255.875. The last four bits of value are de-
coded as an offset, ∆x, in fixed-point format 2.2, resulting
in a number between 0 and 2.75. xmax is finally calculated
as xmin +∆x. Similar computations are performed for ymin
and ymax.

3. The aspect ratio a = ymax−ymin
xmax−xmin

is computed, and a point
distribution is selected according to Table 1. Denote the
distribution dx× dy. For mode IV, the distribution is al-
ways 8×8.

4. The reconstruction levels are calculated using xk = xmin +
k

dx−1 (xmax−xmin), k = 0, . . . ,dx−1, and likewise for yk.
5. The pixel indices are now used to determine which re-

construction level to use. For instance, a value of 010bin
selects reconstruction level x2 for x. The y-value is ob-
tained analogously.

6. For modes II and III, we will also rotate the coordinates

using
(

x′

y′

)
= M

(
x
y

)
, where M =

(
cos(φ) −sin(φ)
sin(φ) cos(φ)

)
is

a rotation matrix and φ is−π/6 or−π/3. See Section 4.2
for an efficient implementation. For modes I and IV, we
just use x′ = x and y′ = y.

7. Division by 255, and remapping to [−1,1] follows: x′′ =
2x′/255− 1 and y′′ = 2y′/255− 1. In the differential

mode, clamping the values to the interval [−1,1] can also
be necessary.

8. Finally, the z coordinate is calculated as z′′ =√
1− x′′2− y′′2. The decompressed normal for the pixel

is (x′′,y′′,z′′).

The last two steps can be performed in the pixel shader.

4.2. Efficient Rotation
In this section, we suggest a hardware-friendly rotation. For
modes II and III of our algorithm, the decompressor needs to
rotate a two-dimensional point by -30 and -60 degrees. In the
following, we develop an inexpensive, approximate rotation
for −30◦. The case with −60◦ uses the same constants, but
at different locations in the matrices, so this is omitted from
our description. The matrix for rotating −30 degrees is:

M=
(

cos(−π/6) − sin(−π/6)
sin(−π/6) cos(−π/6)

)
=

(
0.86602... 0.5
−0.5 0.86602...

)
. (2)

The 0.5-terms above are not expensive to implement, but
multiplication by

√
3/2 ≈ 0.86602 is. To that end, we sug-

gest that the hardware-friendly matrix M̃ is used instead:

M≈ M̃ =
(

1− 1
8 0.5

−0.5 1− 1
8

)
=

(
0.875 0.5
−0.5 0.875

)
, (3)

where multiplication by 0.875 can be implemented as a shift
by three and a subtraction. Note that M̃ is not an orthogo-
nal matrix, i.e., M̃M̃T 6= I. Therefore, we emphasize that we
cannot use MT during compression, because it also holds
that M̃MT 6= I. Instead, we must use the inverse of M̃ during
compression:

M̃−1 =
64
65

(
0.875 −0.5
0.5 0.875

)
≈

(
0.8615... −0.4923...

0.4923... 0.8615...

)
. (4)

If M̃−1 is used to transform a rectangle, the result will be
different from the rectangle obtained by using M−1 = MT.
In fact, when using M̃−1, the rectangle will get a slight skew
due to the fact that the transform is not orthogonal. However,
the average PSNR for all our test images was only reduced
by 0.03 dB on average, which is not significant.

See Figure 7 for a possible hardware implementation.

5. Results

To evaluate the visual quality of our compressor, we have
tested several normal maps, taken from the set in Figure 8,
in a real-time shader development application, in order to
mimic a typical user scenario. We have also rendered images
using a high-end renderer, with anisotropic mipmap filtering,
HDR environment mapping and screen space anti-aliasing.
When compressing with 3Dc, we perform exhaustive search
for the base values in the x- and y-direction separately, to
ensure that our 3Dc compressor is near-optimal. A full ex-
haustive search over x and y simultaneously was too costly.

In Figure 10, we show visual results obtained using a nor-
mal map with slowly varying normals. The pixel shader im-
plemented simple environment mapping in order to better

c© The Eurographics Association 2006.



Munkberg, Akenine-Möller, and Ström / High Quality Normal Map Compression

x
start

8

x
stop

8

y
start

8

y
stop

8

< <

8

8

1

15
xor

value
15

x
min

 8.3

2.2

m

mmm

x
min

x
max

-

+ *

a

31
15
7
3
1

8

8

1

15
xor

value
15

y
min

 8.3

m

mmm

y
min

y
max

-

+ *

a

1
3
7

15
31

x

y

pixel
index
bit
selector

x pixel index
x pixel
indices

48

pixel
index
bit
selector

y pixel index
y pixel
indices

48

3

3

3

3

6

6

a

1
2
3
4
5

right
shift

steps

a

5
4
3
2
1

right
shift

steps

<< 3
<

<< 1
<

<< 1 <

<< 3 <

a

s

neg

neg

n

>>3

>>1

s

s

n

>>3

>>1

-

+

-

+

clamp to
[0, 255]

clamp to
[0, 255]

x’’

y’’

s

0.875x

0.5x

0.875y

0.5y

AND

XOR

m

n
s

rotation unit
differential decoding unit

point distribution unit

Figure 7: A hardware decompressor unit for our normal map compression algorithm. To the left, 128 bits of data are shown,
and these are used to decode one of the 16 normals in a 4× 4 tile. As can be seen, our three techniques have been clearly
marked. The remaining parts is basically 3Dc (except that 3Dc only divides by 7).

show the quality. As can be seen, our technique provides su-
perior results compared to ATI’s 3Dc technique. For this par-
ticular map, we have observed an increase of 10 dB in PSNR
compared to 3Dc.

Figure 11 illustrates a test with a typical game normal
map [Gre04] with sharp edges. Our algorithm handles many
difficult tiles better due to the flexibility offered by the ex-
tra rotation and variable point distribution. We rendered the
images in Figure 10 and 11 using an NVIDIA GeForce FX
6800 graphics card. In the tests, we use RGBfp16 textures,
which are supported by the GPU.

Another visual test is shown in Figure 12, which was ren-
dered using a high-quality offline renderer.

In addition to obtaining visual results, we also used the
mean square error (MSE), which is computed as a summa-
tion over all normals in the image:

MSE =
1

w×h ∑(x̂− x)2 +(ŷ− y)2 +(ẑ− z)2, (5)

where w and h are the width and the height of the image, x ∈
[−1,1] is the x-component of the uncompressed normal and
x̂ ∈ [−1,1] is the corresponding compressed x-component,
and similar for y and z. For normal values, we use the Peak
Signal to Noise Ratio (PSNR):

PSNR = 10log10

(
1

MSE

)
, (6)

where the nominator is one, since the peak signal for a nor-
mal of unit length will always be equal to one, by con-
struction. PSNR values for all images tested, for 3Dc and
our combined algorithm are presented in Figure 9, with im-
proved values on all maps. The average improvement is
about 3 dB. We see large differences on slowly varying maps
and maps with sharp egdes.

6. Conclusions

We have designed three new techniques which can be used
in conjunction to the 3Dc normal compression format. As
shown in our paper, the combination of these handles many
of 3Dc’s weaknesses much better. Our techniques are com-
bined into a scheme that still fits into a bit budget of 8 bpp
and requires only small additions to a hardware decompres-
sor. The new format is more flexible, with 3Dc as a sub-
set, and we have obtained better results on all normal maps
tested, both visually and in the PSNR error measure. For a
series of 20 normal maps, the average PSNR increased with
3 dB.

Acknowledgments

We acknowledge support from the Swedish Foundation for
Strategic Research and Vetenskapsrådet.

c© The Eurographics Association 2006.



Munkberg, Akenine-Möller, and Ström / High Quality Normal Map Compression

Figure 10: A grid cube-map environment is used for these images. The normal map is a very slowly varying map (m) from
Figure 8. Left: normal map compressed with ATI’s 3Dc technique. Middle: rendered using original normal map. Right: normal
map compressed with our algorithm.

a. Bumpy b. Car c. dot1 d. dot2

e. dot3 f. dot4 g. lumpy h. metal

i. normalmap j. onetile k. turtle l. voronoi

m. slowMap n. bulge o. multiBulge p. star

q. boxes r. torus s. skin t. barrel

Figure 8: The set of normal maps used for evaluating
our compression algorithm. m, n, o, p, q, and r are 32
bit/channel maps, all other maps are 8 bit/channel.

References

[ATI05] ATI: Radeon X800: 3Dc White Paper. Tech. rep.,
2005.

[BAC96] BEERS A., AGRAWALA M., CHADDA N.: Ren-
dering from Compressed Textures. In Proceedings of SIG-
GRAPH (1996), pp. 373–378.

[Bli78] BLINN J.: Simulation of Wrinkled Surfaces. In
Proceedings of SIGGRAPH (1978), pp. 286–292.

20

30

40

50

60

70

80

bu
m

py ca
r

do
t1

do
t2

do
t3

do
t4

lu
m

py

m
et

al

N
or

m
al

M
ap

on
et

ile

tu
rt

le

vo
ro

no
i

sl
ow

M
ap

bu
lg

e1
0

m
ul

tiB
ul

ge

st
ar

bo
xe

s

to
ru

s

sk
in

ba
rr

el

Our algorithm
3Dc

P
S

N
R

 (d
B

)

Figure 9: This chart shows the PSNR values for the images
in Figure 8 for 3Dc and our algorithm. Our algorithm is the
combined algorithm, using a standard 3Dc mode, rotations
(30 and 60 degrees), a differential mode and variable point
distribution.

[COM98] COHEN J., OLANO M., MANOCHA D.:
Appearance-preserving simplification. In Proceedings of
SIGGRAPH (1998), ACM Press, pp. 115–122.

[Dee95] DEERING M.: Geometry Compression. In Pro-
ceedings of SIGGRAPH (1995), ACM Press, pp. 13–20.

[Gre04] GREEN S.: Bump Map Compression. Tech. rep.,
NVIDIA, 2004.

[INH99] IOURCHA K., NAYAK K., HONG Z.: System
and Method for Fixed-Rate Block-based Image Compres-
sion with Inferred Pixels Values. In US Patent 5,956,431
(1999).

[KSKS96] KNITTEL G., SCHILLING A., KUGLER A.,
STRASSER W.: Hardware for Superior Texture Perfor-
mance. Computers & Graphics, 20, 4 (July 1996), 475–
481.

[TK96] TORBORG J., KAJIYA J.: Talisman: Commodity
Real-time 3D Graphics for the PC. In Proceedings of SIG-
GRAPH (1996), pp. 353–364.

c© The Eurographics Association 2006.



Munkberg, Akenine-Möller, and Ström / High Quality Normal Map Compression

Figure 11: A typical game normal map (t), rendered in a real-time shader development application, with a cube reflection
map. Left: normal map compressed with ATI’s 3Dc technique. Middle: rendered using original normal map. Right: normal map
compressed with our technique.

Figure 12: The normal map (k), rendered in a high-end off-line renderer, with HDR environment mapping, texture filtering
and advanced anti-aliasing. Left: 3Dc. Middle: uncompressed map. Right: our algorithm. As can be seen in the images, 3Dc
shows more "wobbling" artifacts, and some features even disappear. Our new algorithm shows higher quality, even though
some artifacts remains.

c© The Eurographics Association 2006.


