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Abstract
We present a new powerful and flexible fixed-rate normal map compression algorithm with higher quality than
existing schemes on a test suite of normal maps. Our algorithm encodes a tight box with uniform normals inside
the box, and in addition, a special mode is introduced for handling slowly varying normals. We also discuss
several error measures needed to understand the qualities of different algorithms. We believe the high quality of
our technique makes it a potential candidate for inclusion in OpenGL ES.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Texture

1. Introduction

Normal maps, also called bump maps [Bli78], allow for sig-
nificant geometry savings, while preserving the illusion of
geometric detail. Therefore, they are very popular in the lat-
est generation of games. Texture bandwidth is a limiting fac-
tor, and to allow heavy use of normal maps in a real-time
engine, there is a need of a compact representation of these
textures. The focus of this article is twofold. First, we will
discuss error measures for evaluating the quality of normal
maps, and second, we will present a new compression al-
gorithm. We argue that it is important to study not only the
PSNR of the resulting maps, but also themaximum pixel er-
ror, and theerror distributionover the images alongside with
rendered results of the maps in use. Governed by our error
measures, we present a new high quality compression algo-
rithm, suitable for hardware implementation. Our technique
supports very fast decompression, and robust behavior for a
large range of input data.

2. Previous Work

A number of algorithms have been suggested for normal
map compression. Most of these are fixed rate algorithms,
which allows for fast random access without index tables,
palettes or traversal trees.

Standard color texture compression techniques are not
well suited for normal maps, which often contain many sharp
features. To the best of our knowledge, Deering was the
first to present compression of normals [Dee95]. By using
symmetries on the sphere, and encoding the “sextants” of
the octants, each normal could be stored in 12 bits. Note
that this work was targeted for geometry compression. Fen-
ney and Butler [FB04] also encode by the octants, but se-
lect one of four octant-pairs, each parameterized with 7+7
bits. Each normal uses 16 bits. The 3Dc format [ATI05] is a
dedicated normal map compression technique, which com-
presses blocks of 4×4 pixels. The 16 (unit length) normals

in a block are projected onto the unit circle, and the axis-
aligned bounding box of the projected values is quantized
into an 8×8 grid, giving 64 positions to choose from inside
the box. Four values are encoded to determine the size of the
box, and 3+ 3 bits are encoded per normal in the block to
determine which point in the grid to select. This results in a
total of 128 bits per block of 16 pixels, or 8 bits per pixel. By
exploiting unused encoding combinations, and using them
as additional compression modes, an enhanced 3Dc (here
abbreviated e3Dc) algorithm was defined [MAMS06]. This
algorithm handles very slowly varying normal maps (e.g.,
car hoods), rotated frames and more uniform reconstruction
point distributions. We have borrowed techniques for better
point distributions and bit extraction from this work. Nor-
mal map encodings with adaptive bit rates [WB06, YP06]
achieve better compression rates than fixed-rate approaches
with comparable quality, but rely on complex addressing for
decompression along with more memory accesses to index
tables, which can make a hardware implementation signif-
icantly more complex. Vector quantization allows for more
compact normal map compression and achieves impressive
quality and compression rates [YA06]. However, the ap-
proach is limited to 8-bit normals, which is shown to be in-
sufficient for slowly varying normal maps. An error analy-
sis for normal maps based on unity condition [YHA05]
discussed the impact of the popular elimination of thez-
component while compressing normal maps. An interesting
conclusion is that as long as the normals have small x, y and
small errors in those components the z-error will be even
smaller.

3. Error Analysis

As normal maps are not viewed directly, but rather used in
shaders to define the local normal vector, standard image
quality metrics are not directly applicable. It can be argued
that themean square error(MSE), is a good measure, as
it gives an (averaged) error that indicates the quality of the
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normal map. However, it does not tell us whether there is a
constant small error over all pixels or a small set of pixels
with large errors. An excellent discussion of the limitations
of the MSE is described in Wang et. al’s paper aboutstruc-
tural similarity [WBSS04], where different distortions are
added to an image, all with equal MSE. A smooth normal
map with a few isolated divergent normals will often look
unacceptable as the divergent normals will give rise to cracks
in the smooth surface. Therefore, we also use themax error,
and histograms of the angle error (defined below) per im-
age together with MSE values, to ensure that the algorithms
behave robustly.

MSE is computed as a summation over all normals in the
image:

MSE=
1

w×h ∑(x̂−x)2 +(ŷ−y)2 +(ẑ−z)2, (1)

wherew andh are the width and the height of the image,x∈
[−1,1] is thex-component of the uncompressed normal and
x̂ ∈ [−1,1] is the corresponding compressedx-component,
and similar fory andz. For normals, we use thePeak Signal
to Noise Ratio(PSNR):

PSNR= 10log10

(
1

MSE

)
, (2)

where the nominator is one, since thepeak signalfor a nor-
mal of unit length will always be equal to one by construc-
tion.

There are mainly three components which will be affected
by the precision of the normal in real-time graphics: diffuse
shading, specular shading, and specular reflection. The er-
rors in a rendered image due to the diffuse and specular
shading are relatively small compared to that of the spec-
ular reflection. even a small angular error in a normal may
result in a different texture access in the environment map.
Therefore, it is important to look at the direct angle differ-
ence between the compressed and original normal, as well as
studying bump mapped images with environment mapping.

We propose using the angular deviation [ANRS05], de-
notedEad, defined as:

Ead = arccos(no ·nc) , (3)

which measures the difference in angle between the uncom-
pressed normal (no) and the compressed one (nc).

In addition, we will show false color images of the er-
rors in the normals maps, and also render images with en-
vironment mapped and bump mapped surfaces. For these,
we will compute the structural similarity [WBSS04] quality
measure.

4. New Algorithm

Let us start with a simple motivating example. Imagine we
have a normal map, as in Figure1, consisting mainly of
parallel lines. If the lines are axis-aligned, 3Dc will handle
this example pretty well, as a tight axis-aligned bounding
box (AABB) would capture the details. If the lines are ro-
tated, however, the projected values will be more spread out.

Thus, the AABB will inevitably grow, resulting in less accu-
rate encoding. The enhanced 3Dc (e3Dc) algorithm handles
this by including a small set of angles, thus making the en-
coder less sensitive to directed features. However, we would
like generalize this. The artist should not need to try out
the “best” initial position before baking the texture for best
compressed quality. We also note that texture atlases contain
many small maps, which are packed into a single texture.
This is often an automatic process, and can create arbitrarily
oriented small texture pieces. This is another case where a
rotation-invariant normal map compression scheme would
be desired.

38 / 46 / 50 36 / 39 / 46 38 / 39 / 46 40 / 42 / 49 36 / 40 / 46

Figure 1: An example with strong directed features. PSNR
values are listed for 3Dc / e3Dc / Tight Frame respectively.

4.1. Tight Frame Encoding
Here, we describe our rotation-invariant normal map com-
pression algorithm. Instead of creating a bounded interval
for our x- and y-values, we express a bounding box in a
new coordinate frame using only two points,p = (px, py) &
q = (qx,qy), and the aspect ratio,a = height

width , wherewidth
is ||p − q||, and height is the height of the rotated box.
Figure2 shows this setup. The two axes of this coordinate
frame are simplyê1 = q − p, and ê2 = (−ê1y, ê1x). The
lower left point in this frame iss = p− 0.5aê2. It should
be noted that a similar setup has been discussed in HDR
texture compression [MCHAM06]. Once we have defined
this oriented bounding box (OBB), we distribute points uni-
formly in the box, using the aspect ratio to select the num-
ber of divisions along the two axes. For example, in the
case of a very wide OBB, it makes more sense to use more
points along the widest axis. Thisvariable point distribu-
tion (VPD) [MAMS06] becomes more powerful in our algo-
rithm, as it is easier to find a compact OBB than a compact
AABB (3Dc), or fix-rotation AABB (e3DC). See Figure3
for an illustration of the benefits of VPD.

The flexibility of the OBB combined with the redistribu-
tion of sample points (VPD) makes for a simple, yet pow-
erful algorithm which gives high quality compression when

p

q

height 

e₂̂
e₁̂

widths

Figure 2: The coordinate system of our tight frame (TF) cod-
ing algorithm.
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h  =i 0,1 2-7 8-15
Figure 3: Without (top) and with (bottom) variable point dis-
tribution (VPD). By adapting the point distribution to the
aspect ratio of the bounding box, the area is more evenly
sampled. hi is a four bit number, as described below.

there is correlation to exploit between thex- andy-channels.
Hereafter, this technique is calledtight frame(TF) coding.
The target of our algorithm is 8 bits per pixel (bpp), i.e., 128
bits for 4× 4 pixels. Similar to 3Dc and e3Dc, we use six
bpp for indices. This leaves 32 bits for encoding the bound-
ing box. The information needed to reconstruct the bounding
box comprises the two pointsp & q and the aspect ratioa.
To stay in the bit budget of 32 bits,p andq are quantized
to 7+ 7 bits per point, leaving four bits toa. Note that the
pointsp andq can always be oriented so thata is a number
between zero and one. Being able to encodea = 1.0 means
that there are two ways of expressing the same bounding box
(rotate the first box 90 degrees). In order to avoid this redun-
dancy, we use a maximum value ofa which is somewhat
smaller than 1.0. In addition,a = 0.0 is not particularly use-
ful. For these reasons, we use the following reconstruction
levels:a = 1

32 + hi
1
16, wherehi is the 4-bit number stored.

Sincea increases in steps of116, the height can be inexpen-
sively calculated from the width using shifts, additions, and
integer multiplication withhi only.

4.2. Differential Mode
Similarly to e3Dc, we include a special mode for handling
slowly varying normals inside a block. This is mode is trig-
gered whenpx ≥ qx andpy ≥ qy [MAMS06], and the same
trick is used to recover the payload bits for this mode. How-
ever, our encoding is slightly different. To increase the accu-
racy of the bounding box positions (p andq) of this mode,
we encode normals inside a (non-rotated)square. We en-
code the lower-left corner of the square using 2× 11 bits,
and the length of the square side is coded using 8 bits. In-
side the square, we use 8× 8 uniformly distributed points,
which costs 3+ 3 index bits per pixel. All in all, this mode
costs 22+ 8+ 16×6 = 126 bits per block. Since we target
slowly varying normals with this mode, we limit the square’s
side length for added precision. As an example, we can use
a maximum length of 1/4. This implies that the minimum
side of the square is 1

4×28 = 1
1024. If we select a smaller

maximum size, say 1/32, we get square sizes in[ 1
32768,

1
32].

For the test series used in this paper, a max length of 1/4
worked well. For comparison, e3Dc uses a differential mode
with 2×11 bits for positions and 2×4 bits for a differential
vector. This implies a length of the differential vector in the

smaller interval[ 1
512,

1
32], but the mode is not restricted to

squares, making it a bit more flexible, where applicable.

4.3. Decompression
A proposal for a hardware decompressor is illustrated in Fig-
ure8. The two vectors spanning the bounding box, ˆv = aê2
andê1, as well as the lower left points, are calculated by the
green part. The red part calculates the same values for the
differential version of the coder. The blue part assigns the
right bits for the variable point distribution.

Without implemeting 3Dc, e3Dc and TF in VHDL, it is
hard to estimate relative gate counts for the different algo-
rithms. However, comparing Figure8 with the diagram of
e3Dc [MAMS06] et al., we see that TF has twice the num-
ber of "multiply and divide" units compared to e3Dc, plus
two extra smaller multipliers in the green area. Thus a fair
guess would be that TF is up to twice as complex as e3DC,
which in turn is slightly more complex than 3Dc.

5. Results
To evaluate the visual quality of our compressor, we
have used 20 representative normal maps, which are the
same ones used previously in normal map compression re-
search [MAMS06].

In Figure4, we present both individual PSNR and maxi-
mum angle deviation for the test suite. As can be seen, our al-
gorithm has slightly better scores than e3Dc for the majority
of the normal maps, and significantly better scores than 3Dc
for all maps. For the “bumpy”-map, e3Dc is better due to that
our algorithm uses 7+7 bits for the endpoints, while e3Dc
uses 8+8. Further, as all normals in that image are essentially
along a horizontal line, there is no gain from being able to
rotate the boxes. In the ta-
ble to the right, we present
PSNR values obtained by

3Dc e3Dc TF
30.87 32.74 33.50

first averaging the MSE values for all the normal maps.
PSNR is then computed on this accumulated MSE using
Equation2. Note that it is not correct to simply average the
PSNR scores of the individual images, since this is not a lin-
ear operator. In the extreme — if one image would get zero
error, it would get infinite PSNR and the aggregate PSNR
figure would also be infinite, irrespectively of the errors in
the other images. Averaging the MSE and then calculating
the PSNR avoids this pitfall. As can be seen, our algorithm
has better scores than both 3Dc and e3Dc.

The maximum angle error (bottom part of Figure4) indi-
cates that our algorithm is more robust than the other algo-
rithms in all but one image. In Figure5, we show the his-
tograms over the angular error. Intuitively, it is better to have
less area to the right, and more area to the left. As can be
seen, our TF algorithm consistently performs a bit better in
this respect.

To further illustrate the improvement of our algorithm, we
show false color images of the compressed normal maps in
Figure6, and zoomed-in renderings in Figure7.
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Figure 4: The PSNR (top) and the maximal angular error
(bottom) of all images in the test. We can clearly see a more
robust behavior for our tight frame (TF) algorithm in both
error measures. Please note that all encoders are optimized
for MSE.

6. Conclusion

In a sense, our work here is quite incremental, since we
have basically put together building blocks from other tex-
ture & normal map compression research. However, we have
shown that this novel combination gives a powerful normal
map compression algorithm with high quality under a wide
set of error/quality measures. Furthermore, for mobile de-
vices, compression algorithms are very important, and we
hope that our technique can be considered for inclusion in
OpenGL ES.
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Figure 6: False color images of the pixel errors: From left to right: Original map, 3Dc, e3Dc and TF. We can clearly see
improved performance of the TF algorithm over the two 3Dc compressor variants.

Original 3Dc e3Dc Tight Frame
100% 93.3% 95.7% 96.3%

Figure 7: Rendered quality in a real-time engine. Note that the figures below the zoomed images are Structural Similarity
values for the entire screenshot.
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Figure 8: Diagram of a proposal for a hardware implementation of the decoder.Green: calculatesv̂ = aê2 and ê1 which
are the two vectors spanning the bounding box. It also calculatess, which is the lower left point of the bounding box.Red:
calculates,̂v, ê1 ands for the differential version of the decoder. Note that, if px ≥ qx and py ≥ qy, differential data is stored
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