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Abstract

Camera shake during photography is a common prob-
lem which causes images to get blurred. Here we choose
a specific problem in which the image is a barcode and the
motion can be modeled as a convolution. We design a blind
deconvolution algorithm to remove the translatory motion
from a blurred barcode image.

Based on the bimodal characteristics of barcode im-
age histograms, we construct a simple target function that
measures how similar a deconvoluted image is to a bar-
code. We minimize this target function over the set of pos-
sible convolution kernels to find the most likely blurring
kernel. By restricting our search to dome-shaped kernels
(first monotonously increasing and then monotonously de-
creasing) we decrease the number of false solutions. We
have tried our system on a collection of a 138 barcode im-
ages with varying camera blur, and the recognition rate in-
creases from 32% to 65%.

1. Introduction

Today, barcodes can be found on numerous items, such
as packaged food, books, newspapers and more. There ex-
ist different ways of reading these machine readable codes.
One way is to use dedicated barcode readers, but especially
for general purpose devices such as mobile phones, includ-
ing a dedicated barcode reader may be expensive and take
up valuable space. An alternative is to acquire an image
of the barcode using the camera that is anyway built into
the device and process the image in order to decode the bar-
code. Reading barcodes by image processing may be slower
and less reliable than using dedicated barcode scanners, but
in some cases they are better: When reading barcodes on
a monitor screen, for instance, dedicated systems based on
reflected laser light do not work.

Sometimes however, barcode images acquired with cam-
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eras will not have the required quality to be recognized and
decoded. This could happen for a large number of reasons,
including difficult lighting, out-of-focus blur, etc, but in this
paper we focus on motion blur, especially the type that can
be modeled as a convolution. We will deconvolute the im-
age using an existing, non-blind deconvolution algorithm
and a starting kernel. We will then modify the kernel so
that our target function (acting on the deconvoluted image)
is minimized. After minimization, we will have both the
kernel and the deblurred image. Hence our deconvolution
method is blind. The question of how frequently people
end up with such blurred images highly depends on the use-
case, type and settings of the camera and other parameters.
For instance, photography in poor lighting conditions re-
sults in a noisy image. In the case of barcode images it
may be compensated by noise reduction, but as an alterna-
tive we may have the shutter open longer to get more light
through the camera. In this case the risk of motion blur also
increases.

The next section describes related work, and it is fol-
lowed by a section on the blurring model we have used.
Section 4 will describe the barcode deblurring in more de-
tail. The last three sections will treat result, discussion and
conclusion.

2. Related work
Lately, there have been breakthroughs in the area of de-

blurring of general images. The new approach is to use
statistics about image gradients, and other characteristics
that most natural images have, to guide the algorithm to
a correct estimation of the blurring kernel [4, 7, 19, 20].
These algorithms produce stunning results but are quite
slow and sometimes need good guesses of the kernel length
to give good results. Furthermore, since they are using
statistics from natural images, they do not necessarily work
well on barcode images which are quite different from nor-
mal images. Thanks to the authors of [20], we got access
to the executable of their algorithm and tried it on barcode
images. Unfortunately the results were unsatisfactory, and
this can be due to the difference in image statistics between
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natural images and barcodes.
Thus it makes sense to process barcode images in a dif-

ferent way from regular images. Generally we know much
more about how they should look, especially if they are
one-dimensional. We have not found so much previous
work in the particular field of barcode deblurring. Esedoglu
performs optimization of a gradient-based target function
based on gradient descent [3]. His algorithm aims at pro-
cessing barcode signals acquired from dedicated barcode
readers, and therefore solves a slightly different problem
from this paper. The approach by Kim and Lee [8] takes into
account general signals including barcode images. They
also consider nonuniform illumination in images as a part
of the deblurring algorithm, which improves the practical
performance. But both mentioned methods are mainly fo-
cused on out-of-focus blur or other types of gaussian blur.
This paper will concentrate mainly on motion blur, and we
will show that rather large blurring kernels can be handled.

3. Blurring model
In general, an image o(x, y) of size N × M , which is

blurred within a maximum kernel size of L × T , can be
written as:

B(x, y) =
L∑

i=1

T∑
j=1

kx,y(i, j)o(x− i+ l0, y − j + t0) (1)

Hence, the blurring of an image is modeled as an integration
(or, in the discrete domain, summation) of different pixels
in the original image which is defined by a variable ker-
nel kx,y , i.e., different positions do not necessarily have the
same kernel. Constants l0 and t0 show in which part in the
original image the kernel is operating. By assuming that the
kernel does not change over the image, we can simplify this
to a convolution:

b(x, y) = k(x, y)∗o(x, y) ≡
L∑

i=1

T∑
j=1

k(i, j)o(x−i+1, y−j+1),

(2)
where B(x, y) = b(x + l0 − 1, y + t0 − 1). In real cases
we have a true original image o, which is convoluted by a
blurring kernel k. After that, noise n is added, and we get
the blurred image b:

b(x, y) = k(x, y) ∗ o(x, y) + n(x, y) (3)

4. Barcode deblurring
Blind deconvolution of an image to remove motion blur

aims at recovering the original image as well as the kernel.
As pointed out by Magain et al. [12] and Bishop et al. [1],
this is essentially an under-constrained problem since many

(a) Ideal barcode (b) Ideal barcode histogram

(c) Image of barcode taken
under ideal conditions

(d) Barcode image histogram

(e) Motion-blurred barcode (f) Blurred barcode image histogram

Figure 1. The blurring effect is composed of two steps: The first
step from the first row to the second row shows the conversion of
an ideal barcode to an image which decreases the quantity of the
exact black and white points. The second step from the second
row to the last row indicates that when an image gets blurred the
histogram gets more spread out. The right column shows the gray-
scale distribution histogram of the left column.

combinations of an image plus a blurring kernel can pro-
duce the same blurred image. To select a plausible solution
among these, some extra constraints are needed, such as the
smoothness constraint described by Magain et al. [12], or
constraints on the distribution of image gradients as used
by Fergus et al. [4].

Figure 1 shows how an ideal barcode gets blurred: The
first image 1(a) is the ideal barcode, the second image 1(c)
is an actual image of the barcode produced by the camera
without motion blur, and the third image 1(e) shows the type
of image we get during motion blur. As you can see in the
corresponding histograms 1(b) and 1(d), as soon as we take
a real image 1(c), the acquired image does not contain the
exact black and white pixels any more because of noise,
varying illumination, differences in light reflection, digital-
ization and other artifacts. We want to use deconvolution to
go from images such as 1(e) to ones such as 1(c). The main
reason not to go all the way to the ideal image is that re-
versing the first step (going from Figure 1(c) to Figure 1(a))
requires a nonlinear function, whereas reversing the second
step (going from Figure 1(e) to Figure 1(c)) can be handled
by a (linear) deconvolution. When the number of unknown
parameters increases, which occurs in our case, the num-
ber of possible solutions grows exponentially. On the other
hand we know that the original image is a barcode which
is blurred as a result of a relative translational movement



between camera and barcode object which can be modeled
as a convolution. The basic idea is to start by guessing a
kernel, deconvolute the blurred image using the kernel and
then evaluate how close to a barcode the deblurred image is.
We will then change the kernel, evaluate again and use the
new kernel if the new deblurred image is more similar to a
barcode. The main contribution of this paper is the evalu-
ation function with which we measure the similarity of an
image to a barcode. We will now go into more detail.

We will use the Wiener-filter based version of the MAT-
LAB function deconv. Assuming we have a starting guess
for the kernel k and the noise-to-signal ratio n, we can get
an estimation of the original signal by

ô = Deconv(b,k, n), (4)

where b is the blurred image. We then construct a target
function λ(·) that models the deviation from a real barcode
image by checking the characteristics which real barcodes
should possess. This means that a low value of the target
function λ(ô) indicates that ô resembles a barcode well —
a high value analogously indicates that ô is far from resem-
bling a barcode. Since the other variables except the kernel
are known, the target function can be stated as a function of
the kernel:

λ(ô) = λ(Deconv(b,k, n)) = λ′(k) (5)

Finally we need to use an optimization algorithm to find
the kernel that minimizes our target function. We treat the
MATLAB function deconv as a black box and hence we
cannot compute analytical differentials with respect to the
elements of the kernel k. Therefore we cannot use gradi-
ent based optimization methods such as gradient-descent or
Gauss-Newton. Instead we use a variant of simulated an-
nealing to do the optimization. Next, we will describe the
algorithm in more detail.

4.1. Barcode deblurring algorithm

We will assume that the bars in the bar code are roughly
aligned with the y-axis of the image. We will also assume
that a pre-processing step has extracted the (blurred) bar-
code image from the rest of the image. In our test images
this was done by manual cropping. The rest of our algo-
rithm is fully automatic. As is shown in Figure 2, we start
by converting the cropped-out image 2(a) to grayscale 2(b).

Since we are dealing with one-dimensional barcodes and
all bars have equal information in the vertical direction, the
motion vector component in the vertical direction will not
affect our result (considering the bar height infinite). We
can therefore convert the two-dimensional image to a one-
dimensional image by averaging over the columns:

b(y) =
1
N

N∑
x=1

b(x, y) (6)

This procedure will reduce the noise since the mean value
converges to the noise-free value of that column. It will
also reduce the complexity. Consequently the kernel will
also become one-dimensional:

k(y) =
L∑

x=1

k(x, y) (7)

Averaging over the entire height of the barcode should re-
move most of the noise, but this only works well if the bar
code is truly axis-aligned with the image, or if some kind of
rectification is performed. Therefore we have instead aver-
aged only over a few rows (in our case 10 rows which based
on image resolution is between 2% and 5% of the barcode
height) in the middle of the barcode. This works if the bar-
code is roughly axis-aligned.

The next step is to construct the target function λ that
will measure how close we are to a real barcode. As we
mentioned already, barcodes have some specific character-
istics that may help us to recognize them. As seen in the
second step of Figure 1, the histogram of a barcode im-
age without motion blur will have a clear bimodal shape.
Therefore, we design our target function to measure this
bimodality of the intensity distribution. An ideal barcode
is comprised of pure black (intensity=0) and white (inten-
sity=1) pixels, but blurring produces more gray colors in the
range of (0, 1) and pushes the intensity distribution toward
the mean. Our target function therefore favors a histogram
with two peaks where the variance of each peak is small
while the distance between them is large. In more detail,
if the vector o = [o(1) o(2) . . . o(M)] is the one-
dimensional barcode, our target function Bivar is

Bivar(o) =


V ar(o1)+V ar(o2)

[mean(o1)−mean(o2)]
2 , |mean(o1)−mean(o2)|≤1

∞ , |mean(o1)−mean(o2)|>1

where
{

o1 = {o < mean(o)}
o2 = {o > mean(o)} , (8)

and where mean(o) is 1
M

∑M
i=1 o(i). The numerator of

the Bivar target function is hence defined as the variance
of data-points above average plus the variance of the data-
points below the average. This sum is then divided by the
square difference between averages of each part. By mini-
mizing the Bivar function we minimize the variances over
each peak in the intensity distribution histogram shown in
Figure 1(d). This means that our target function tries to
accumulate the intensity distribution in two different points
(by decreasing the variance at each point) instead of pushing
the distribution away from the mean (which had been done
by simply maximizing V ar(o)). Division by the squared dis-
tance between the two peaks in the Bivar function will help
us to keep the distance between the two peaks as large as



(a) Blurred image acquired by cam-

era

(b) Grayscale conversion (c) One-dimensional conversion by

averaging or cropping a cross section

(d) Perpendicular replication of

one-dimensional barcode

(e) After deblurring by our algo-

rithm

(f) Fine tuning by converting to ex-

act black and white

Figure 2. Processing performed by our algorithm to acquire the
original barcode

possible to avoid merging the peaks. Note that the minimum
intensity value is zero, and the maximum is one. Therefore,
we should never have a difference of the averages larger
than 1. If we still get a larger difference, we know that the
kernel is wrong so we set the Bivar value to infinity. This
means, that particular kernel will never be selected. The
original image in Figure 2(e) was recovered using this tar-
get function.

To start the search we need a starting kernel. Assuming
we know the length L of the kernel, we can start with a
uniform kernel

k0 = [
1
L

1
L

. . .
1
L︸ ︷︷ ︸

L times

]

and then we calculate λ′(k0) and save it as the initial tar-
get value. To find the best kernel we will use a variant of
Simulated Annealing [9], to search for the minimum of the
function λ′(k): We add a random vector τ of length L with
components in the interval [0, 1

2q ]: kc = k0 + τ to cre-
ate the new candidate vector kc. Here the variable q will
be analogous to (the inverted) temperature of the simulated
annealing system; as q increases, smaller and smaller devi-
ations from the current position will be taken. Then kc is
normalized so that it sums to one: |kc| = 1. After this, we
calculate the λ′(kc) again, and if the new value of λ′(kc) is
smaller than λ′(k0), we use this value k1 = kc. Otherwise
the old value is kept k1 = k0. We repeat this step a constant
number of times. In our system we used 1000 repeats. (For
most of the barcodes in our test set, using 100 or even only
10 iterations was enough, but for a few barcodes 1000 iter-
ations were needed. A practical method may therefore be
to try decoding after 10, 100 and 1000 iterations.) Next we
make our neighborhood interval narrower around the newly
found kernel (by increasing q) and reapply the same proce-
dure again. The kernel which minimizes our target function
the most among all random kernels that we have tested, is
now our estimation of the kernel for that kernel length.

To find the best kernel length, we simply try all different

lengths between 1% of the barcode length up to 10% of the
length. Blurring kernels smaller than 1% are to small to
cause any problems for the subsequent barcode decoding
software (at least for the resolutions we tried), so it is not
necessary to try smaller sizes. For blurring kernels larger
than 10% it is usually not possible to recover the original
image. The reason for this is that the number of possible
solutions increases quickly with increased kernel size, and
hence it is harder to find the correct one.

Some false solutions can be eliminated by considering
only the type of motions that are possible in the real world:
We assume that the majority of blurring effects will occur as
a cause of camera shake. It seems likely that natural shakes
made by hand cannot change the velocity of the camera too
abruptly. It turned out that most of the motion blurred bar-
code images that were examined could be deblurred well
by a ”dome shaped” kernel such as the samples shown in
Figure 3. By ”dome shaped” we mean that the kernel is
first monotonously increasing, up to a maximum point, af-
ter which it is monotonously decreasing. By forcing the
kernels to be dome shaped, we can improve the speed of the
convergence. We enforce this by adding a sorting step right
after the vector τ has been added: The maximum value of
the kernel is found, all values preceding this value are sorted
in increasing order, and all values after the maximum value
are sorted in decreasing order. The new, dome shaped ker-
nel is then passed to the normalization step, and the process
continues.

4.1.1 Restoring the barcode

In the final step we simply use the estimated kernel in our
Wiener deconvolution algorithm along with the blurred im-
age and the appropriate noise-to-signal ratio:

ô = Deconv(b,k, n)

The image shown in Figure 2(e) is an example of a de-
blurred barcode image from the blurred barcode shown in
Figure 2(d). Increasing the noise-to-signal parameter in the
Wiener deconvolution algorithm will make the resulting de-
convoluted images smoother. Since the set of all possible
smooth images is smaller than the set of all possible images,
this will reduce the search space and make it easier to find
an acceptable solution. On the other hand, setting the noise-
to-signal ratio too high will prevent our algorithm from find-
ing sharp barcode images that are blurred with large kernels.
For our test set a noise-to-signal ratio of either 0.001 or 0.01
was suitable in all cases. Therefore we simply run our algo-
rithm twice, once with n = 0.01 and once with n = 0.001
and then we see which one is best (i.e., which one can be
decoded). In the end we also perform some post processing
to reach a more desirable output: We simply set the pix-
els with lower-than-average intensity to zero (as black), and



the pixels with intensities higher than the average to one (as
white). A sample result is shown in Figure 2(f).

5. Result
We tested our system on 138 images of barcodes mostly

taken by a 3.2 mega-pixel mobile phone camera (Sony Er-
icsson K810i) under various degrees of motion blur. We
fed all the images into a barcode reader software written
for mobile devices and 45 images among all samples were
decoded successfully without any deblurring. We then fed
these rather sharp 45 images through our deblurring system,
and they were hardly changed by the system — indicating
that the method does not destroy already good data. The
remaining 93 images that could not be decoded by the ex-
isting barcode reader were then fed into our deblurring algo-
rithm. After deblurring, 44 of the 93 images could now be
correctly decoded. For the 45+44=89 images that were cor-
rectly decoded, we could assume that the convolution ker-
nel must have been (at least roughly) correctly estimated.
For these cases where the kernel was recovered correctly, it
was interesting to study the kernel length. Typically, if the
kernel length was smaller than half of the width of the nar-
rowest bar, the barcode could sometimes be decoded even
without deblurring. However, with deblurring, it was pos-
sible to decode images with blurring kernels of up to four
times the width of the narrowest bar. In Figure 3 you can
see some of the sample results.

The computation time on a standard PC running at 2.66
GHz, for a barcode image width of 1000 pixels, is approx-
imately 8 seconds with 1000 iterations and 2 seconds with
10 iterations. No attempts to optimize the code for speed
were made.

6. Further discussion
In the process of constructing our target function we tried

some approaches based on image gradients and also some
others in the frequency domain. These approaches were
based on assumptions that bar code images after deblurring
would contain very sharp edges, i.e., gradients of large mag-
nitude or high frequency magnitudes in the Fourier domain.
None of these alternative approaches turned out to work as
well as our Bivar criterion.

The target function used basically measures the bimodal-
ity of the intensity distribution. If there is an intensity gra-
dient going from the left in the image to the right, this will
smear out bimodality, even for a non-blurred image. To
mitigate this situation, it might be possible to compensate
for the global lighting before using the proposed method
or performing partial deblurring, but we have not tried this.
In general, our deblurring may fail in cases such as having
heterogenous blur as a result of non-uniform kernel, vary-
ing illumination, high noise level and when other blurring

(a) 28-Pixels blurred (b) 30-Pixels blurred

(c) 60-Pixels blurred (d) 83-Pixels blurred

Figure 3. Deblurring samples made by our algorithm with differ-
ent motion kernels. In each figure first row is the (blurred) input,
the second row shows the deblurred image by our deblurring algo-
rithm, the third row shows the fine-tuned barcode image and the
last row depicts the approximated kernel found by our algorithm
which is used for deblurring. Note that all kernels in this example
are ”dome shaped”, i.e., they are first monotonously increasing up
to their maximum point, after which they are monotonously de-
creasing. (Sample images have different length in the range of
500 to 1200 pixels)

(a) (b)

(c) (d)

(e) (f)

Figure 4. Some blurred barcode images for which our deblurring
did not work well.

artifacts such as out-of-focus are dominant. Figure 4 shows
such blurred barcode images when our deblurring algorithm
did not work so well. Figure 5 shows the result of our algo-
rithm over the images in Figure 4. As you can see, some-



(a) Deblurring result of image 4(a) (b) Deblurring result of image 4(b)

(c) Deblurring result of image 4(c) (d) Deblurring result of image 4(d)

(e) Deblurring result of image 4(e) (f) Deblurring result of image 4(f)

Figure 5. Deblurring results over the corresponding images in Fig-
ure 4. In these cases the decoding was unsuccessful.

times barcodes are not decodable, although the output result
from our algorithm shows a significant improvement in de-
blurring. Very small changes in barcodes may completely
ruin their uniqueness and consequently they can not be de-
coded.

7. Conclusion
We have presented a heuristic algorithm for deblurring

barcode images captured by conventional digital cameras.
We use the bimodal characteristics of barcode intensity his-
tograms to construct a target function which can quantify
the similarity of an image to a real barcode. By exploit-
ing an existing non-blind deconvolution algorithm we have
constructed a blind deconvolution algorithm by guessing the
kernel which makes our deconvoluted image most barcode-
like. Our algorithm will reach its best performance when
the translatory motion blurring which can be modeled as a
convolution is dominant over other image degradation arti-
facts.
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