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Abstract

In this paper we investigate low-bitrate compression of scalar textures such as alpha maps, down to one or two
bits per pixel. We present two new techniques for 4× 4 blocks, based on the idea from ETC to use index tables. We
demonstrate that although the visual quality of the alpha maps is greatly reduced at these low bit rates, the quality
of the final rendered images appears to be sufficient for a wide range of applications, thus allowing bandwidth
savings of up to 75%. The 2 bpp version improves PSNR with over 2 dB compared to BTC at the same bit rate.
The 1 bpp version is, to the best of our knowledge, the first public 1 bpp texture compression algorithm, which
makes comparison hard. However, compared to just DXT5-compressing a subsampled texture, our 1 bpp technique
improves PSNR with over 2 dB. Finally, we show that some aspects of the presented algorithms are also useful for
the more common bit rate of four bits per pixel, achieving PSNR scores around 1 dB better than DXT5, over a set
of test images.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Texture—

1. Introduction

As increases in processing power continue to outpace in-
creases in memory bandwidth [Owe05], available bandwidth
often becomes a performance-limiting factor in modern ras-
terizer architectures for computer games on consumer-level
graphics cards in PCs [AMN03]. For mobile architectures,
bandwidth becomes even more critical, as it affects power
consumption and thereby battery life [AMS03]. One way of
reducing bandwidth usage is to employ texture compression,
pioneered by Knittel et al. [KSKS96], Beers et al. [BAC96]
and Torborg and Kajiya [TK96]. The idea is to compress the
textures and transfer them over the bus in compressed form,
thus saving bandwidth. Compressed textures not only gen-
erate less bandwidth during rendering, but also demand less
storage space, thus allowing for higher resolution textures
for the same amount of texture memory. Our contribution is
to show how table based compression, based on the intensity
representation in ETC/iPACKMAN [SAM05] can be used to
an advantage for compression of scalar 8-bit textures such as
transparency (alpha) maps.

2. Previous work

Delp and Mitchell [DM79] propose a fixed rate image com-
pression algorithm for gray scale images. Each pixel in a
4× 4 image block can choose from two gray values us-
ing a bitmask. The bitmask and the two 8-bit grey values
are stored explicitly in the block, yielding 2 bits per pixel
(bpp). The scheme is extended to color by Campbell et

al. [CDF∗86] by using two colors instead of two gray levels.
However, the limitation of only having two colors/graylevels
per block gives rise to banding artifacts. This problem is
greatly reduced by Iourcha et al. [INH99] by the introduc-
tion of two more, interpolated, colors to choose from. The
algorithm called DXTC/S3TC compresses textures to 4 bits
per pixel and is now the de facto standard for RGB texture
compression on desktops. The DXT1 version of the stan-
dard includes support for RGBA textures with one bit alpha
(“punch-through alpha”). This is done by replacing one of
the interpolated values with black with alpha 0.0, whereas
the other three values have alpha 1.0. A similar scheme for
punch-through alpha RGBA is also used in the PVR-TC
compression format by Fenney [Fen03]. However, PVR-TC
includes an additional way of obtaining alpha which allows
for smoother alpha transitions: PVR-TC works by blending
two low-frequency signals, and it is possible to specify these
signals using RGBA4443 instead of the regular RGB555, al-
lowing greater control of the alpha signal at the expense of
the color representation. DXTC has chosen a different path,
using 64 bits for the RGB channels of the 4×4 texture block
and another 64 bits for the alpha channel. This decoupling
of the alpha from the color has some drawbacks — the en-
coding cannot take advantage of any correlation between the
color and the transparency channels, nor can it exploit the
fact that high quality color is mostly needed during opac-
ity. However, one benefit of the decoupling is that the alpha
compressor can be used as a general 8 bit data compressor;
hence it has been used for luminance alpha textures as well
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as normal map textures using ATI’s 3Dc [ATI05], and with
the advent of programmable shaders the importance of such
general data compression seems destined to increase.

Whereas the RGB part is coded similarly in the different
DXTC codecs, the alpha channel is encoded using two dif-
ferent modes. The first mode, used in DXT2 and DXT3, sim-
ply stores the four most significant bits of the alpha value for
each pixel. When decompressing, the most significant bits
are then copied into the least significant bits, ensuring that
both 0 and 255 can be represented. The difference between
DXT2 and DXT3 is that the former encodes colors that are
premultiplied by alpha, whereas the latter does not.

The second alpha compression mode is used in DXT4 and
DXT5, and is a bit more complex. Two 8-bit alpha values
are stored for each 4× 4 block of pixels, and six new val-
ues are interpolated between them, for a total of eight pos-
sible alpha values per block. Three bits for each pixel in the
block are then used to select one of these eight values. The
procedure is illustrated in Figure 1. This technique thereby
manages to avoid any banding in blocks with slowly varying
alpha values, while keeping decent quality in blocks with
a wider range of values. An improvement to the method is

Figure 1: An illustration of the alpha compression algorithm
used in DXT4 and DXT5. Two colors are stored for each
block, six colors are interpolated between them, and these
eight colors are used when compressing the block.

made by realizing that the interpolated values are the same
regardless of the ordering of the initial 8-bit values: inter-
polating between 50 and 150 gives the same values as in-
terpolating between 150 and 50. Therefore, the case where
the second value is smaller than the first can be used to sig-
nal a different compression mode. In this new mode, the al-
pha values 0 and 255 are always among the eight possible
values, and only four values are interpolated in-between the
two supplied ones. This leads to improved performance for
blocks where some pixels are either fully transparent or fully
opaque, a fairly common case when storing opacity infor-
mation in the channel. DXT4 differs from DXT5 only in the
way it handles premultiplication. Therefore, in the following
we will only refer to DXT5 although the arguments hold also
for DXT4.

Our approach builds upon the ETC/iPACKMAN scheme,
and therefore we will go through that in some detail. In
ETC [SAM05] and its predecessor PACKMAN [SAM04],
each pixel in a 4× 2 pixel area can choose between four

different paint colors. These paint colors are obtained by
specifying a base color and then modifying the intensity
of this base color using offset values from a table. For in-
stance, if the base color is (221,132,132) and the table of
offset values is {−10,−5,5,10}, the resulting paint col-
ors are (211,122,122),(216,127,127),(226,137,137) and
(231,142,142). A two-bit pixel index is used for each pixel
to choose between the four paint colors. Blocks contain-
ing smooth data will need fine variations, and for such
blocks a table such as {−4,−2,2,4} may be appropriate.
However, for blocks with large variations, a table such as
{−70,−28,28,70} may be better. In ETC/PACKMAN this
is solved by letting each 4× 2 pixel block choose a table
from a codebook of several tables. Smooth blocks then se-
lect “small” tables, and high-contrast blocks can use “large”
tables. This is similar to the DXT5-way of storing the min-
and max value, but is more efficient in terms of compression,
as we will see.

3. Low-Bitrate Compression

One interesting aspect of DXTC is that both compression
modes with a full alpha channel use four bits per pixel for
alpha, and four bits per pixel for color. This means that the
information in the alpha channel is only compressed down
to 50% of its original size, with very little loss of quality as a
result. In contrast, the color channels are compressed down
to one sixth of their original size, resulting in a noticeable
reduction in quality. Whether this difference in quality is de-
sirable will of course depend on the application, and exactly
how the channels are used in the pixel shader, but it seems
reasonable to believe that further compression of the alpha
channel might be acceptable for some applications. Because
of this, we have developed algorithms for compressing an
alpha map down to two bits or one bit per pixel, 32 or 16 bits
per 4 × 4 block, and investigated the effects this has on the
rendered image for a few different types of alpha maps.

3.1. Description of the 32-bit Algorithm

Our proposed 2 bpp scheme starts by defining three paint
alpha values similar to the four paint colors used in ETC.
First, a base alpha value is supplied. Only the four most sig-
nificant bits are stored, and during decompression, these are
copied into the least significant bits to get the complete 8-bit
base alpha value. Next, a codebook of 16 tables with three
offset values each is stored on chip, and each block supplies
an index into this codebook, selecting one of the tables of
three offsets. Finally, each of the three paint alpha values are
created by adding one of the three offsets to the base value
and clamping the sum to eight bits. This procedure is shown
in Figure 2, along with the codebook of 16 offset tables we
used. Next, ETC and DXT5 both proceed by selecting one
of the available colors for each pixel in a block. In our case,
however, we only have 24 bits remaining for the 16 pixels,
which is not enough to choose between the three values. Our
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0 9 -2 -9
1 19 3 -19
2 23 -3 -23
3 35 1 -35
4 48 -7 -48
5 51 6 -51
6 62 -7 -62
7 71 14 -71
8 76 -3 -76
9 100 23 -100

10 93 -16 -93
11 93 2 -93
12 111 -31 -111
13 107 -8 -107
14 164 -5 -164
15 125 0 -125

5

7

Figure 2: An illustration of the technique of using a base
value and an offset table index to determine possible alpha
values for a block. The index selects an offset table to be
used, and the base value is then added to each value in the
table which after clamping gives us the three final alpha val-
ues for the block.

solution is to divide the pixels into groups of two (horizon-
tal neighbors in our case), each group using three bits to se-
lect between combinations of alpha values for the group. Be-
cause there are nine possible alpha value combinations and
we can only select eight different combinations using three
bits, one possible combination is discarded, and will never
be used. We have discarded the combination with the low-
est possible alpha value in one pixel followed by the high-
est value in the next, on the rationale that this combination
should be one of the rarest due to inter-pixel correlation.

The 16 tables were obtained from training; starting with
random values and successively changing the values while
compressing a set of training images to see if the changes
were beneficial. The training images were not used in the
test set later used to evaluate the performance.

3.2. Description of the 16-bit Algorithm

In our 16-bit version, we use four bits to select a base alpha
value and another four to select a table of offsets, just as in
the 32-bit version. This leaves only eight bits for the pixel
indices. Thus the approach taken in the previous scheme
for encoding the pixel indices is no longer usable. However,
eight bits are just enough to specify a line segment in a 4×4
block by encoding the start- and stop coordinates (x1,y1)
and (x2,y2) using two bits per coordinate. We thus tried to
use a line segment as the skeleton for our pixel indices, and
found it to provide a rather fair trade-off between being able
to specify small individual details (such as a single pixel) and
larger connected components. The layout for the compressed
block is shown in Figure 3. A line, one pixel wide, is drawn
between the two pixels, as show in the “drawn line”-diagram
in Figure 4.

0 15
base value

table
codeword

x1 y1 x2 y2

Figure 3: The bit layout of our 16-bit compressed block.

index m0 m1 m2 m3 m4 m5 m6 m7

0 -141 -54 -48 7 47 105 128 142
1 76 77 55 9 -29 -79 -100 -117
2 -109 -74 -63 -5 -14 36 35 28
3 75 7 -19 37 -42 -65 -58 -75
4 -60 -31 -25 -30 27 17 78 21
5 50 47 31 12 -4 -46 -114 -64
6 -49 -46 -41 2 4 23 145 91
7 2 22 60 41 15 -14 -24 -42
8 -42 -66 -41 -47 -14 -7 4 50
9 29 37 8 7 0 -47 -20 -31
10 -25 -19 -15 -12 -2 12 14 5
11 -6 -7 18 12 -12 43 -15 -18
12 -27 -29 -5 13 11 117 86 177
13 1 -2 10 -5 -6 -55 -9 -10
14 49 18 -16 32 20 3 -19 -6
15 50 42 36 13 -11 -13 12 62

Table 1: offsets m0 to m7 for the 16 offset tables for 1 bpp
compression. Every other table has been flipped to account
for the case when both line endpoints lie in the same point.
In all other cases, all 16 tables can either be flipped or used
as-is.

Variations in pixel indices are often smooth, and we have
therefore devised a neighbor counting scheme to get smooth
pixel indices from the line segment: Once the line has been
drawn, a count is made for each of the remaining pixels,
starting at 0. One is added for each diagonally neighboring
pixel lying on the line, two is added for each vertically or
horizontally neighboring pixel on the line, and finally one is
added for each edge of the block neighboring the pixel if any
neighbor pixels were on the line. This count then becomes
the pixel index for the pixel, ranging from 0 to 7 with 7 re-
served for pixels directly on the line. Thus it is possible to
use eight values per table instead of four as in the 32-bit ver-
sion. The procedure is shown in Figure 4. For instance, the
pixel marked with “2” in the “pixel indices” diagram gets
one point for having a diagonal neighbor on the line, and
another point for also being an edge pixel, for a total count
of two. The 16 possible offset tables used in this mode are
shown in Table 1. Just as for the 32-bit version, these offset
tables were found by training on data that was not part of the
evaluation set.

With this method, results will be very similar if the po-
sitions of the first and second given pixels are swapped. We
exploit this by reversing the order of the eight alpha values if
the first given pixel lies after the second given pixel assum-
ing a fixed ordering of the 16 pixels in the block (We use left-
to-right, top-to-bottom). Note that this trick cannot be used
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0 0 3 1

x y x y1 1 2 2

7 6 5 5

5 7 7 7

2 3 4 4

0 0 0 0
extracted coordinates

drawn line

pixel indices

alpha values

0 7654321
decompressed block

Figure 4: An illustration of the proposed 16-bit compression algorithm. The eight alpha values are determined from the base
value and offset index as in Figure 2. Each pixel selects one of these values based on the drawn line, resulting in the final
decompressed block.

when both endpoints of the line lie on the same pixel, and so
the original offset tables are alternatively low to high alpha
values or high to low. This way, blocks with line segments
consisting of a single pixel still can reverse the ordering by
selecting a slightly different table.

One drawback with the algorithm is that constant blocks
cannot be represented, which will result in pattern-like ar-
tifacts in flat areas. Fortunately, such blocks do not con-
tain much information and can therefore be very well com-
pressed by a special mode that we implemented: A particu-
lar combination of (x1,y1)(x2,y2)-values is disallowed (we
used (0,0)(0,1)) and such a block is instead decoded by fill-
ing all pixels with the eight first bits from the bit sequence
(normally occupied by “base” and “code word”). This fix
removes the artifacts, and also increases compression effi-
ciency, since this type of block is very common.

Since compression to this format is intended to be per-
formed offline before the texture is used, performance is
not critical. Our compressor works by precomputing the 216

possible final blocks, along with their average alpha value.
Each block is then compressed by comparing the block to
all possible compressed blocks and selecting the best one.
The average alpha value for the blocks is used as an early re-
ject method: if the squared difference between the averages
of the block being compressed and a possible compressed
block is larger than the lowest mean squared error we have
obtained thus far, the possible block can be skipped without
examining the individual alpha values.

3.3. Testing Method

There are three important properties that are desired of our
low-bitrate algorithms. The first is that they should be rea-
sonably efficient compared to other methods with similar bit
rates, the second that the appearance of the final rendered
scene using our compressed textures is acceptable, and the
third that a hardware implementation of the decoder is rea-
sonably efficient.

In order to test the first property we have performed
comparisons with other methods achieving the same level
of compression. For the 32-bit case, we have designed a
DXTC-like compressor for comparison, which, instead of
selecting a base value and an offset table, selects two base
values and interpolates between them to obtain the third.We
exploit the fact that the order in which the two alpha values
are supplied is irrelevant, by having the interpolated value
be the sum of 2

3 of the first value and 1
3 of the second.

We have also implemented BTC [DM79] and included it in
our comparison. For the 16-bit case we have compared the
described algorithm with two different methods. The first,
and simplest, is to use a lower resolution DXT5-encoded al-
pha texture, with half the horizontal and vertical resolution.
This approach simply lowers the sampling rate in order to
reach the bit rate target of 1 bpp, and as such represents a
lower bound for the compression efficiency (quality per bit)
we want. Secondly, as we are targeting a compressed size
of just 16 bits, we have tried a brute-force approach of us-
ing vector quantization to optimize the set of 216 possible
compressed blocks. Vector quantization would not be prac-
tical for texture compression, as it would require storing 216

blocks on-chip, equivalent to a megabyte of ROM, but is in-
cluded to provide an indication of what the upper bound for
compression efficiency might be in our case. Since the per-
formance of vector quantization systems typically improve
with increased training data, and since we do not have much
training data available, we run the risk of getting too low an
estimate of the upper bound. We therefore perform training
directly on the test data: This gives our vector quantization
implementation an unfair advantage that, if our training al-
gorithm is efficient enough, should more than compensate
for the lack of training data, hence providing a more reason-
able upper bound estimate. For our proposed systems, the
tables are obtained by training on data. In those cases, the
training data is different from the test data. The three com-
pression methods were compared on a set of 64 images, with
mip-levels ranging from 512 × 512 to 8 × 8 pixels. For all
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algorithms, including DXT5, BTC and the DXTC-like algo-
rithms used for comparison, we use exhaustive search, which
results in optimal compression.

In order to test the appearance of a rendered scene us-
ing our compression methods, we have selected a few dif-
ferent types of alpha textures for testing: one alpha map,
one specular map and one parallax map. They are all from
the 2006 computer game Oblivion, by Bethesda Softworks.
They are originally compressed using DXT5, and we have
further compressed them using our low bit rate algorithms,
before decompressing them and using them in uncompressed
form in the game to study the results. The third property, effi-
cient hardware implementation, will be treated in Section 5.

3.4. Results

The results from our 32-bit and 16-bit comparisons are
shown in Figures 5 and 6, respectively, where the PSNR
score is plotted for different mip-sizes. PSNR is defined as
10 log10(2552/MSEset), where MSEset is the mean square
error over the set of textures to be measured (for instance
a certain mipmap level) and is calculated as MSEset =
(1/N)∑N MSEtex. MSEtex is the mean squared error of an in-
dividual texture MSEtex = (1/(WH))∑W,H(a− â)2, W and
H being the width and height of the texture respectively, and
where a and â represent the original and compressed pixels.
It is important to calculate an aggregated PSNR score this
way, since the alternative way, to simply average the PSNR
scores of the individual textures, will overstate the PSNR
measure. For instance, a single texture with zero error will
produce a PSNR score of infinity no matter what the errors
are in the rest of the textures. By averaging the MSEtex val-
ues instead, this problem is avoided. A higher PSNR value
indicates a smaller error, and therefore increased quality.

Note in particular in the 16-bit comparison that further
compressing the textures leads to significantly higher PSNR
scores than simply lowering the resolution to achieve the
same bit rate. We are also closer to the vector quantization
algorithm, which, although impractical, is an approximation
of the upper bound of any 4 × 4 1-bpp algorithm.

The codecs in Figure 5 and 6 all show increased quality
with increasing mip sizes; this reflects the fact that larger
images typically have more inter-pixel correlation than sub-
sampled versions of the same images. DXT3 does not ex-
ploit inter-pixel correlation and hence does not benefit from
increasing mip sizes as will be seen later in Figure 8.

Figure 7 shows screen captures from Oblivion with low-
bitrate alpha textures in use, demonstrating the effect of the
compression on the final rendered image.

The results seen in the figure indicate that although we
achieve very low PSNR for the alpha channel, the degrada-
tion in image quality in the resulting images is barely notice-
able.

8x8 16x16 32x32 64x64 128x128 256x256 512x512

24

26

28

30

32

Resolution

PS
N

R

 

 
Proposed Algorithm
S3TC Based
BTC

Figure 5: Graph of our comparison of 32-bit compression
modes. The PSNR scores shown are averages over 64 test
images for seven different mip-levels.
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Figure 6: Graph of our comparison of 16-bit compression
modes. The PSNR scores shown are averages over 64 test
images for seven different mip-levels. Note that the vector
quantization system in this diagram is not feasible for tex-
ture compression, but should be regarded as an approximate
upper bound on quality for a 4 × 4 1 bpp system..

4. Evaluation of Table-based Compression

Since our low-bit rate algorithms seem competitive, we
wanted to study whether the method of using base values
and offset tables would be efficient also for 4-bpp data rates.
In the next section, we therefore present a 4-bpp version of
our algorithm, which is directly comparable to DXT5. How-
ever, first we discuss some interesting characteristics of that
codec.

4.1. Motivation

One problem with the coding used in DXTC comes from the
interesting fact that DXT5 in some cases allows higher ac-
curacy than 8 bits. Setting the base values to 150 and 151,
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Wall showing specular map Original (DXT5) White alphaOur 2bpp alpha Our 1bpp alpha

Tree sprite showing alpha map Original (DXT5) White alphaOur 2bpp alpha Our 1bpp alpha

Wall showing parallax map Original (DXT5) White alphaOur 2bpp alpha Our 1bpp alpha

Figure 7: Details from the low-bitrate comparison. The zoomed in images are, from left to right: Using the original DXT5 alpha
channel, using our 2bpp algorithm, using our 1bpp algorithm, and using a completely white alpha channel.

for instance, means that six shades of alpha between 150
and 151 are possible to represent. Thus DXT5 is almost as
accurate as an 11-bit representation for very slowly varying
blocks. This can be exploited when the original data is more
than 8 bpp, such as if floating point alpha maps are used.
However, when the original data is 8 bpp, this feature be-
comes a drawback. Assume the original block contains data
in the range of 150-154. Selecting the base values 150 and
154, for instance, leads to the possible alpha values 150, 151,
151, 152, 152, 153, 153 and 154 after rounding. This will re-
sult in lossless (exact) compression, but there is no use for
having two items with the value of 151: Selecting 150 and
157 as base values works just as well, also producing 150,
151, 152, 153 and 154, (as well as 155, 156, and 157). Seven
out of 256, about 3%, of all possible base value combina-
tions are redundant in this way, producing duplicate entries.
When instead using tables, it is possible to make sure that no
two table entries are the same, and it is thus possible to do
better than DXT5 for 8 bpp data.

A second, more subtle, problem is with base values spaced
further apart. In this case, slightly varying the two base
values, and thereby the endpoints of the encoded interval,
barely changes the intermediate interpolated values. Because
of this, there are large amounts of base value choices that
will result in similar final alpha values. It would be desirable

to allow for a different distribution of intermediate values for
a given set of endpoints.

We have investigated swapping out the DXTC approach
of storing two base colors and interpolating between them
for the table-based approach, using an 8-bit base value and
an 8-bit offset table index.

4.2. Reduced table size

One issue with our 8-bit offset table index is that it can select
between 256 different offset tables, each containing eight
entries requiring 9-bits each. Storing these tables as-is on
chip would require over 2 kb of storage, which may be pro-
hibitive. In order to reduce this, we have opted to store just
16 tables with four 6-bit values, fitting in just 48 bytes of
ROM. The four values in each table are copied, their signs
changed and the value of one is added to provide the other
four values in the table. We also treat the first four bits of the
table index as a multiplier, multiplying them with the values
in the table (selected by the other four bits) to produce the
final eight offset values. The 16 stored base offset tables are
shown in Table 2.

4.3. Results

The results of our comparison are shown in Figure 8. As can
be seen, the proposed algorithm performs about 1 dB better
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index m0 m1 m2 m3 m4 m5 m6 m7

0 -17 -8 -5 -2 3 6 9 18
1 -12 -9 -6 -2 3 7 10 13
2 -12 -7 -4 -1 2 5 8 13
3 -12 -5 -3 -1 2 4 6 13
4 -11 -7 -5 -2 3 6 8 12
5 -10 -8 -6 -2 3 7 9 11
6 -10 -7 -6 -3 4 7 8 11
7 -10 -7 -4 -2 3 5 8 11
8 -9 -7 -5 -1 2 6 8 10
9 -9 -7 -4 -1 2 5 8 10

10 -9 -7 -3 -1 2 4 8 10
11 -9 -6 -4 -1 2 5 7 10
12 -9 -6 -3 -1 2 4 7 10
13 -9 -2 -1 0 1 2 3 10
14 -8 -7 -5 -3 4 6 8 9
15 -8 -6 -4 -2 3 5 7 9

Table 2: offsets m0 to m7 for the 16 offset ta-
bles for 4 bpp compression. An index of 15 and a
multiplier of 4 would result in the final offset table
{−32,−24,−16,−8,12,20,28,36}. Note that the four
rightmost columns are calculated as the inverse of the ear-
lier columns with one added.

on average than the one used in DXT5 on our set of test
images. Again, exhaustive (optimal) compression was used
for DXT5. The difference is most pronounced in tiles with
widely varying values, where our method gains an advantage
by being able to select from different distributions within a
certain interval. An example of this is shown in Figure 9.
DXT5 manages better on a few images in the test, in cases
with small variations in alpha values.

8x8 16x16 32x32 64x64 128x128 256x256 512x512
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Proposed Algorithm
DXT5
DXT3

Figure 8: Graph of our comparison of 64-bit compression
techniques. The PSNR scores shown are averages over 64
test images for seven different mip-levels.

5. Hardware Implementation Analysis

This section presents a detailed description of how decoding
may be done in hardware for the 16-bit algorithm. We have

Uncompressed DXT5 Proposed algorithm

Figure 9: Differences between DXT5 coding and the pro-
posed algorithm on a hand-picked example, where the large
range of values gives DXT5 difficulties.

not done a VHDL implementation of our algorithm, so we
cannot say exactly how the hardware complexity compares
to, for instance, that of DXT5. However, it is fair to assume
that it is higher; in DXT5 the three-bit indices are stored di-
rectly, whereas in the proposed algorithm they must be de-
coded, which adds to complexity. Still, we hope that the huge
savings in memory bandwidth and storage will more than
make up for this added complexity, especially over time if
growth in computation continues to outpace that of memory
bandwidth.

The proposed hardware implementation is divided into
two steps; the top row in Figure 10 (i through vi) describes
logic that is shared between texels in the block, whereas the
bottom row (vii through ix) shows per-texel logic. For in-
stance, if four texels from the same block are to be decoded
for a bilinear blend, one copy of the upper row logic and four
copies of the lower row logic would be sufficient to decode
all four texels in parallel.

Assume that we want to decode the pixel marked with a
circle in Figure 10(a) where the coordinates are (x1,y1) =
(2,0), (x2,y2) = (1,3). The job of the per-block logic is
to draw the line between these two coordinates. First it is
checked that 4y1 + x1 ≤ 4y2 + x2, if this is not the case the
points are swapped. This is implemented using one com-
parator and two multiplexors as shown in Figure 10(i). Fig-
ure 10(b) shows the possible lines from (x1,y1) (red pixel)
to (x2,y2) after sorting. The next step mirrors the coordi-
nates for lines with negative ∆xs (marked with green in Fig-
ure 10(b)) using two adders and a multiplexor, as show in
Figure 10(ii). Figure 10(c) shows the possible lines after mir-
roring. The following step transposes the coordinates if they
are below the diagonal (marked with green in Figure 10(c))
using five adders and a multiplexor (Figure 10(iii)). After
transposition, the possible lines are shown in Figure 10(d).
The correct line pattern can now be selected with a multi-
plexor selecting from ten different 10-bit vectors as shown
in Figure 10(iv). The possible patterns are shown in Fig-
ure 10(e). Next, the bit sequence is transposed back. This
is implemented in Figure 10(v) using twelve one-bit mul-
tiplexors. The numbering of the bits follows that of Fig-
ure 10(f). The result for our example vector is shown in Fig-
ure 10(g). The last step in the per-block logic is to mirror the
bit sequence using 16 multiplexors. The bit pattern (shown
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Figure 10: Hardware layout diagram.

in Figure 10(h)) is now correct up to shifting in the x- and
y-directions.

The first step in the per-texel logic is to shift the bit pat-
tern. The shifting is for two purposes; the first is to make
sure that (x1,y1) and (x2,y2) end up in the correct positions
as shown in Figure 10(a), and in our example one left shift
and zero vertical shifts are needed. The second purpose is to
place the texel to be decoded in the middle of the window
marked with a red dashed rectangle in Figure 10(j). Another
left shift is needed for this. The two types of shifts are natu-
rally combined and carried out in hardware blocks (vii) (hor-
izontal shift) and (viii) (vertical shift) in Figure 10. The hor-
izontal shift logic uses four units that can shift two bits and
four units that can shift one bit. This way all shifts from −3
to 3 can be encompassed. For four-step shifts, the output is
always zero, so the last column in Figure 10(vii) implements
a conditional zeroing of all bits. Each shift unit is made out
of three or four three-way multiplexors, as can be seen in
Figure 10(k), and each conditional zero-all circuit consists
of three AND gates. Thus the two shifting stages can in total
be implemented using 49 multiplexors and 21 AND gates.

The output from the shifters is the neighborhood of the
pixel of interest marked with the dashed red rectangle in Fig-
ure 10(j). The components are now summed together in step
(ix); a 4-neighbor is worth 2, a diagonal neighbor 1, the pixel
itself is worth 7 and if this sum is larger than zero, edges also
count. The sum is clamped to the interval [0,7] and the re-
sulting pixel index is reversed (i.e., an index k is replaced by
7−k) if the reverse flag from stage (i) is set. A look-up table
finds the correct table of eight values using the table code-
word, and the recently calculated pixel index is used to select
one of these eight values. Finally, the base value is expanded
to eight bits and added; the result is clamped to the interval
[0,255] and the final texel output is thereby obtained.

Note that steps (ii) through (vi) could be replaced by a
look-up table; there are exactly 136 different line patterns,
and since each pattern consists of 16 bits this would mean a
ROM of 272 bytes. An alternative would be to store the fin-
ished 3-bit indices in ROM — 48 bits would then be needed
per pattern, yielding 816 bytes. The entire chain of steps (ii)
through (ix) would then be replaced. Such an implementa-
tion would certainly be simpler to implement and debug, but
we believe it would be more costly in terms of gate count.
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6. Conclusions and Future work

We have introduced two low-bitrate alpha compression al-
gorithms, based on the base value and offset table represen-
tation introduced in ETC, compressing the alpha channel of
a texture down to 32 or 16 bits per 4 × 4 block. Further, we
have investigated the performance of these algorithms, and
their impact on images rendered using textures compressed
with them.

A straight comparison of compression performance of our
1 bpp algorithm has been difficult, since there is very little
literature on such low-bit rate algorithms. We have shown,
however, that our 2 bpp algorithm achieves better PSNR
scores than BTC, the precursor to DXT5. We have also
shown that our 2 bpp and 4 bpp algorithms that use a base
value- and offset table pair also leads to better compression
than the interpolation approach used in DXTC.

A very intriguing finding is how little visual impact high
compression of alpha channels had in our application inves-
tigation. Although our study is very limited, it indicates that
compressing alpha channels used to store specular or paral-
lax maps down to one bit per pixel can lead to rendered im-
ages virtually indistinguishable from those rendered using
DXT5-compressed alpha channels, despite a 75% reduction
in bandwidth used for that channel. When compressing an
alpha channel used for the opacity information of a sprite
such as in the top row of Figure 7, the difference is much
more pronounced, a result of thresholding used in the shader.
Despite this, in the particular example in Figure 7 it is not
clear that the resulting image is subjectively worse, and we
believe that our algorithm would be a viable alternative in
general for such opacity data. Even so, there will of course
always be cases where sacrificing the quality of the alpha
channel is simply not acceptable.

One possible drawback of using these low-bitrate alpha
compression modes is that, if used for RGBA textures, the
bits saved in the alpha channel might lead to impractical bit
sizes for the compressed texture blocks. In DXT5, 64 bits are
spent on the RGB part and 64 bits on the alpha part. If we
go down from 64 bits to 32 bits for the alpha part we end up
with 96 bits per block, which is not a power of two and hence
not burst-friendly. In such a case, we would suggest spend-
ing the saved bits in the color channel instead. Alternatively,
reducing the bit count for the RGB part from 64 to 48 might
be attractive if combined with the 16 bit alpha mode, result-
ing in an attractive burst size of 64 bits. However, we make
no explicit suggestions for new RGBA texture compression
formats, instead leaving that for future work. Note however
that using the 16- and 32 bit modes to compress one- or two-
channel textures such as alpha-only or luminance alpha tex-
tures will of course give attractive burst sizes that are powers
of two.

It should be noted that, although designed with mobile
applications is mind, the proposed methods are certainly not
limited to such use; games on PCs and consoles can also

be bandwidth limited, and such devices would hence also
benefit from the proposed schemes.

Finally, all compression modes currently included in the
DirectX standard assume correlation between the three color
channels. For applications where there is no such correlation,
it would be interesting to investigate compression modes
which apply some of the proposed algorithms on each chan-
nel individually, which should lead to higher quality results
or higher compression ratios in these special cases.
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