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Abstract

Light maps have long been a popular technique for visually rich real-time rendering in games. They typically
contain smooth color gradients which current low bit rate texture compression techniques, such as DXTI1 and
ETC2, do not handle well. The application writer must therefore choose between doubling the bit rate by choosing
a codec such as BC7, or accept the compression artifacts, neither of which is desirable. The situation is aggravated
by the recent popularity of radiosity normal maps, where three light maps plus a normal map are used for each
surface. We present a new texture compression algorithm targeting smoothly varying textures, such as the light
maps used in radiosity normal mapping. On high-resolution light map data from real games, the proposed method
shows quality improvements of 0.7 dB in PSNR over ETC2, and 2.8 dB over DXT1I, for the same bit rate. As a side
effect, our codec can also compress many standard images (not light maps) with better quality than DXTI/ETC2.

Categories and Subject Descriptors (according to ACM
CCS): Data [E.4]: Coding and Information Theory—Data
compaction and compression;

1. Introduction

Texture compression [BAC96, KSKS96, TK96] continues to
be a very important technology in real-time rendering due
to lower bandwidth consumption and less memory usage. At
the same time, compute power increases at a much faster
pace than DRAM latency and bandwidth [Owe05], making
techniques like texture compression potentially even more
important in the future.

Light maps have been used to increase realism of lighting
in real-time rendering for a long time. Since lighting often
changes quite slowly, a low-resolution light map can often

be combined with a (repeated) high resolution texture in or-
der to create a convincing effect. However, if sharp shad-
ows are desired, a higher resolution must be used in the light
map, and this will increase the need for texture compres-
sion. The situation is aggravated by higher quality render-
ing techniques, such as radiosity normal mapping (RNM)
[McT04, MMGO6, Gre07], since they in effect need three
or more light maps per object. Examples include Valve’s
Source engine (e.g., Half-life 2) [McT04] and Mirror’s Edge
& Medal of Honor by DICE/EA [LHO09]. Sometimes about
300 MB of (compressed) RNM textures are needed for a sin-
gle level in a game, which puts pressure even on high-end
graphics cards. In general, the RNM techniques precompute
three light maps (each for a different normal direction), and
at render time, a linear combination of these light maps is
computed per pixel based on the direction on the normal.
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The normal is typically accessed through a high-resolution,
repeated normal map.

As can be seen in Figure 1, the industry standard, DXT1,
fails to compress blocks with smoothly varying content with
sufficient quality. Both DXT1 [INH99] and ETC1 [SAMOS]
work by using a small color palette that the pixels can choose
color from. Since they are designed to handle quite arbitrary
texture content, neighboring pixels are allowed to choose
palette entries completely different from each other. This
flexibility is expensive in terms of bits, and therefore the
number of possible colors in the block must be restricted.
For instance, DXT1 can only display four different colors
within a 4 x 4 block, and ETC1 can display four different
colors within a 4 x 2 block. Apparently, this is not enough
for slowly varying textures such as light maps from radios-
ity normal maps. It should be noted that ETC2 [SP07] has a
special mode for planar content in a block, but that too does
not give enough flexibility for light maps.

This paper proposes a new texture compression algorithm
to solve this problem. Instead of allowing neighboring pixels
to obtain completely different colors, we exploit the spatial
redundancy in the data by letting the position of the pixel in
the block control the interpolation between two base colors.
To allow for edges, a non-linear function is used to produce
the interpolation value. This makes it possible to give unique
colors to every pixel of a 4 x 4 block. For “non-smooth”
blocks, we propose using a variant of ETC2 as a fallback.

2. Previous Work

In this section we review the most relevant previous work,
which in our case leaves out all the work on alpha map com-
pression, high dynamic range (HDR) texture compression,
and lossless compression.

In 1996, the first three papers about texture compres-
sion were published [BAC96, KSKS96, TK96]. Beers et
al. [BAC96] present a texture compression scheme based
on vector quantization (VQ) which can compress down to
two bits per pixel (bpp). They compress 2 x 2 RGB888 pix-
els (12 bytes) at a time using a code book of 256 entries,
thus achieving a compression ratio of 12:1. The main issue
with VQ based schemes is that they create memory indirec-
tion; the decompression hardware must fetch the index from
memory before it knows from where in the code book to
fetch data. This creates extra latency that can be hard to hide.
To reach sufficient quality, one optimized code book is typi-
cally needed for each texture, which makes it harder to cache
the code books.

The Talisman architecture [TK96] uses a discrete cosine
transform (DCT) codec, but this has seen little use. We
speculate that this has to do with the steps following the
DCT, which typically include run-length coding and Huff-
man coding. Both these steps are serial in nature, and can-
not be decoded in a fixed number of steps. These are fea-

tures that are seldomly desired in a hardware decompressor
for graphics. Also, often the hardware decompressor is lo-
cated after the texture cache, and hence, the decompressor
only needs to decompress a single pixel, which also does
not fit well with Huffman & run-length decoding; if the
last pixel is requested, all previous pixels must anyway be
decoded. Finally, Huffman coding produces variable length
data, whereas most texture compression systems use a fixed
rate in order to preserve random access. You could also
imagine a DCT-based scheme where we avoid Huffman &
run-length decoding in order to solve this problem, but that
would reduce the compression ratio, and more importantly,
each DCT coefficient would still affect every pixel to be de-
coded, making decompression times long. Hence, it seems
that DCT-based codecs are not well-suited for hardware tex-
ture compression, but in other contexts, such as video com-
pression, they work very well.

Delp et al. describe an gray scale image compression sys-
tem called block truncation coding (BTC) [DM79], where
the image is divided into 4 X 4 blocks. Two gray scale val-
ues are stored per block, and each pixel within the block
has a bit indicating whether it should use the first or second
color. By storing colors instead of gray scale values, Camp-
bell et al. extend this system to color under the name color
cell compression (CCC) [CDF*86]. Knittel et al. [KSKS96]
develop a hardware decompressor for CCC and use it for tex-
ture compression (as opposed to image compression). The
S3TC texture compression system by lourcha et al. [INH99]
can be seen as an extension of CCC; two base colors are
still stored per block (in RGB565), but two additional colors
per block are created by interpolation of the first two, creat-
ing a palette of four colors. Each pixel then uses two bits to
choose from the four colors, with a considerable increase in
quality as a result. In total 64 bits are used for a block, giving
4 bits per pixel (bpp). S3TC is now the de facto standard on
computers and game consoles under the name DXT].

Fenney [Fen03] also stores two colors per block, but uses
the colors of neighboring blocks: The first color is used to-
gether with the first colors of the neighboring blocks to bi-
linearly interpolate the color over the area of the block. This
way a smooth gradient can be obtained. The second color
is treated similarly, creating two layers of color. Finally two
bits per pixel are used to blend between these two layers,
producing the final pixel color. Fenney present both a 4 bpp
and a 2 bpp variant of the codec.

The ETC scheme [SAMOS5] also uses 4 x 4 blocks, and
compress down to 4 bpp. Otherwise the approach is rather
different. One color is chosen per 2 x 4 pixel block. The
color of the second block is either encoded separately or dif-
ferentially, where the latter allows for higher chrominance
precision. Each block also encodes a table index, where each
entry has four values of the form: {—b, —a,+a,+b}. Each
pixel uses two bits to point into this table entry. The value
from the table is added to all three color components, and
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Figure 2: Left: 4 X 4 pixels with a very regular pixel pat-
tern. Right: illustration of how a profile function is used to
describe the content of the pixel block to the left. Note how
the profile function is merely a function of x, and then ex-
truded in the y-direction.

can hence be viewed as a luminance modification. ETC is
standardized in OpenGL ES as an OES extension. By using
invalid combinations in the ETC format, Strom and Petters-
son [SPO7] manage to squeeze in three more modes in ETC.
This new format, called ETC2, is better at handling chromi-
nance edges, and has a special mode for planar transitions.

Recently, new codecs with higher bit rates have been
introduced, such as Microsoft’s BC7 (called BPTC in
OpenGL [BPT]) which operates at 8 bpp. However, faced
with the prospect of doubling storage and bandwidth re-
quirements, game developers may choose the imperfect
quality of 4 bpp systems instead.

One technique in the field of image analysis and percep-
tion is to represent an image as a summation of a small num-
ber of oriented functions [OF96, DV03]. Our technique also
uses oriented functions, but represents the blocks using only
one function per block, not using a summation of functions.

3. Compression using Smooth Functions

In this paper, we focus on the compression of smooth light
maps, and a general observation is that they often contain
rather little information, while at the same time, each pixel
in the block can have a unique color, even if the differences
are not always that big. Another observation is that many
blocks are directional, i.e., they contain more information
in one direction (across an edge) than in the other direction
(along an edge).

We start by describing the algorithm for gray scale light
maps using a very simple example, illustrated in Figure 2.
We have divided the image into blocks of 4 x 4 pixels, and
are concentrating on one block. The x-coordinate of each
pixel is used to evaluate a function, here called profile func-
tion, and the result is used as the gray shade for the pixel.
Thus, a single profile function is sufficient to describe the
gray scale content of the entire block. However, more flex-
ibility is needed to be able to accurately represent a large
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Figure 3: Left: Two orthogonal directions are placed in a
block of 4 x 4 pixels, so that the block varies maximally
along the first direction, and minimally along the second.
Right: A typical function that can be used to describe the
variation along the first direction.
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Figure 4: lilustration of the decoding of the block. The edge
line is positioned in the block and each pixel computes its
signed distance to the edge. This in turn is fed into a smooth
profile function in order to compute the value of the pixel.

number of blocks. For example, a key parameter is to be able
to rotate the profile function in the xy-plane.

Hence, the core idea of our research is to encode the ori-
entation of an edge in each pixel block, and then specify a
profile across the edge using a function with a small number
of parameters.

To enable orientation and translation, we first establish
two orthogonal directions in the block, and an origin. Here,
we would like to arrange the directions so that the gray
scale varies maximally along the first direction, and mini-
mally along the other direction. The “origin” is placed in
the lower left corner of the block. An example is shown
to the left in Figure 3. Mathematically, this can be done
by fitting a line, a;x+ b1y +c¢; = 0, so that the “normal,”
(a1,by), of the line coincides with the first direction. Note
that the subscript is used to distinguish it from other lines.
By normalizing the equation so that a% +b% =1, we can
compute the distance, dj, from any point, (px, py), to the
line by simply inserting the point into the line equation:
dy = dy(px, py) = a1 px+ b1 py +c. This distance is signed
meaning that it is negative on one side of the line and posi-
tive on the other. See Figure 4 for an illustration of the edge
line and the signed distances from the pixel centers to this
line.

Next, we use a scalar-valued profile function, f(d;), to
represent the variation inside the block. Since d; will be
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constant for points on a line parallel with the second direc-
tion, f(d;) and hence the gray scale value of the block will
also be constant in that direction. Points along the other di-
rection will give rise to a varying d;, and hence different
gray scale values, f(d). Using the line definition above, we
obtain the gray scale value in a pixel, (px, py), as f(d;) =
flaipx+bipy+ci).

The profile function, f(d;), can be a function going from
dark to bright, such as the one depicted to the right in Fig-
ure 3. This works well for blocks where there is an edge in
the block. It could also be a function going from dark, bright
and then dark again. Such a function would be better suited
for blocks depicting a white line on a black background.

3.1. Extension to Color

A naive way of extending our method to color would be to
duplicate the above-mentioned procedure three times, i.e.,
once for each color component. However, that would cost
too many bits, and would not exploit the fact that the color
channels often are well correlated. Instead of directly cal-
culating the grayscale value using the function f(d;), we
use it to calculate an interpolation factor, i = f(d;), where
i € [0, 1]. We then use this interpolation factor to interpolate
between two different colors, ¢4 and cg, which are represen-
tative for the block. The interpolation is then done as:

¢(px; py) = (1 —i)es +ics, ey

where i = f(d;) = f(aypx+b1py+cy). As can be seen, the
same interpolation factor, i, is used for all three color chan-
nels. So far, we only need to store the colors ¢4 and cp, the
line equation (for instance using the constants ay, by, cy),
and indicate which function, f, was used for calculating the
interpolation factor in order to decompress a block.

3.2. Second Direction Tilt

Up to this point, we have assumed that all the variation
is across the edge, i.e., in the first direction. The variation
along the edge, i.e., in the second direction (see Figure 3), is
often non-negligible in practice and needs to be represented
in our model as well. Most of the bits will be allocated for the
placement of the edges and for the variation across the edge,
and hence, we need to limit the number of bits describing
the variation in the second direction. We have found that a
simple linear variation, i.e., a slope, along the edge does a
decent job. This slope is described with a single parameter,
Y, which is the same for all three color components, i.e., a
linear luminance variation. An additional term, yd», is added
to each component of the color:

c(px,py) = (1 =i)eq +icg +vda(1,1,1), )

where dy = axpx + bapy + 2 is the signed distance from
the pixel, (px, py), to a line orthogonal to the first line, and

(1,1,1) is the maximum color. The line equation for this sec-
ond line is ayx + by + ¢p = 0, where:

(a2,b2,¢2) = (=by,a1,—0.5(a; +by)). (3)

This means that the direction of the first line is rotated by
90 degrees, and that the translation, c;, is computed so that
the line goes through the origin (0.5,0.5) of the pixel block.
This new term gives us the opportunity to add a luminance
tilt along the edge, as illustrated in Figure 6d.

3.3. Profile Functions

We currently use four different profile functions, fi(d;), i €
{1,2,3,4}, as shown in Figure 5, and we pick the profile
function that best suits the content of each pixel block. All
four functions are based on the simple smoothstep function,
s(d), shown below in pseudo-code:

x=d/w //scale by width, w

x+=0.5 //center function around origin
x = clamp(x,0,1) //clamp betweenOto1

return3x> —2x> //evaluate smoothstep

Note that a width parameter, w, is used to control how
rapidly the smoothstep function should increase. A small
value will give rise to a sharp edge, whereas a large value
will create a smooth transition. The value 0.5 is added so
that the function is centered around d = 0.0

Figure 5a shows a function we call the symmetric single,
which is the basic smoothstep function, f; = s(d) with a
width parameter to control the shape. Figure 5b shows the
asymmetric single function, f;, where the smoothstep func-
tion also is used. However, two different width values are
used here; one to the left of the y-axis, and one to the right.
Figure Sc shows the asymmetric double function, f3, which
uses two “concatenated” smoothstep functions (hence the
name ’double’), again using different widths on either side of
the y-axis. In contrast to the two previous profile functions,
this function uses three colors for the interpolation calcula-
tion. A third color is used at d; = 0, and to save storage this
color is not a separate color but instead generated as the av-
erage of the other two and scaled with a scale factor.

The fourth function is different since it adds another
smoothstep in an arbitrary direction, d3 = a3 px +b3py +c3,
and multiplies two smoothstep functions, s(-), together:

fa(d1,d3) = s(dy)s(d3). “

Hence, each smoothstep uses its own line equation, but they
also use their own widths. The scalar value, f4(d;,d3) €
[0,1], is used as an interpolation factor in exactly the same
way as for the other functions. See Figure 5d for an example.
As can be seen, this gives us the ability to represent various
smooth corners in a block. Since the fourth function is al-
ready two-dimensional, no second direction tilt is needed.

Our choice of profile functions is the result of a combina-
tion of reasoning and trial and error, therefore it may seem
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Figure 5: The four functions used to fit the color variation.
a) symmetric single, b) asymmetric single, c) asymmetric
double, and d) corner, which is the multiplication of two
smoothstep functions along two different directions.

a bit arbitrary. We started out with the assumption that the
single symmetric function should capture smooth and sharp
edges well, which turned out to be true. We then tried over
20 different functions, and picked the ones that gave the best
results. In retrospect, it is clear that the asymmetric single
captures blocks containing discontinuous edges, and that the
asymmetric double can capture a smooth line inside a block,
as mentioned earlier. The corner function captures corners,
which often occurs in light maps.

3.4. Fallback method

While many blocks will compress well using the above ap-
proach, there will be others that do not have any directional
structure, or any structure at all. For such blocks, we use
a variant of ETC2 as a fall-back coder [SPO7]. One bit per
block will therefore be used to indicate whether profile func-
tions should be used, or the ETC2 variant should be used. To
preserve a bit rate of 64 bits per block, we need to steal one
bit from the ETC2 codec. This is done by disabling the indi-
vidual mode in ETC2, which frees up the diff-bit. Thus, 63
bits are left to compress the block using profile functions.

3.5. Function Parameters, Quantization, and Encoding

In this section, we will describe, in detail, all the parame-
ters of our codec, how they are quantized and encoded. Our
codec can use either of the four profile functions in Figure 5,
and hence, two bits are needed to select profile function. This
leaves 63 — 2 = 61 bits to encode the parameters for the se-
lected profile function.

In Figure 6, a visualization of the key parameters for sym-
metric single are shown. There are the two end-point col-
ors, ColorA (c4) & ColorB (cg), and line placement pa-

colorB

(b)

color
‘tighter

colorB.

“colorB.
darker

Figure 6: lllustration of the function parameters of the sym-
metric single smoothstep function: a) two end-point colors,
b) rotation and translation, ¢) width, and d) slope.

(d)

rameters, consisting of orientation, 01, and translation, cj.
The line equation then becomes: a;x+ b1y + ¢y = 0, where
a; = cos0; and by = sinB;. As we have seen earlier, this
line is used to place the profile function in its best possible
location. Furthermore, Figure 6¢ shows the function width,
which determines how rapidly the function rises (see the
width parameter, w, in Section 3.3). The effect of the width
can be seen in Figure Sa. Finally, Figure 6d shows the second
direction tilt parameter, 1, described in Section 3.2. This im-
proves image quality in that it often reduces block artifacts.

The bit distribution varies depending on the choice of pro-
file function. We chose a starting distribution for each func-
tion and then iteratively optimized them over a small train-
ing image. The final bit distributions for our parameters in
the four smoothstep-based profiles are listed in Table 1. The
symmetric single uses 3 - 6 bits per color, five bits for its
width, w, seven bits for its orientation angle, 01, seven bits
for its translation, ¢y, and six bits for its tilt parameter, 7.

Compared to the symmetric single, the only new parame-
ter for the asymmetric single is that it has two widths, w
and wy, instead of only one. The asymmetric double has
an additional parameter, called the scale factor, m. As men-
tioned briefly in Section 3.3, this factor is used to compute
the color in the “middle” of the asymmetric double function.
The color is computed as: ¢,,;; = m(c4 + ¢p)/2. Finally, the
corner codec uses two line equations, also described in Sec-
tion 3.3, and hence encodes two orientation, 6; and 63, and
two translations, ¢ and c3.

All of the parameters used are viewed as floating point
values, with individual ranges as shown in Table 2. The
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Number of bits SSingle|ASingle| ADouble|Corner
ColorA (c4) 666 565 555 555
ColorB (cp) 666 565 555 555
Function widths (wyw»)|| 5- 44 55 44
Rotations (0163) 7- 8- 6- 66
Translations (cic3) 7- 9- 6- 56
Scale factor (m) - - 5 -
Second direction tilt () 6 4 4 -
Total 61 61 61 61

Table 1: Bit distribution for the four modes; symmetric sin-
gle (SSingle), asymmetric single (ASingle), asymmetric dou-
ble (ADouble), and corner smoothstep mode.

Parameter min float | max float
value value
Color components 0 255
Function widths (w;&w») 0.005 5
Rotations (01 &83) 0° 180°
Translations (c| &c3) -2 +2
Scale factor (m) 0 2
Second direction tilt (y) -16 +16

Table 2: This table shows the valid range for each parameter
before quantization. The minimum values are the same after
quantization, but the maximum values are slightly smaller
depending on the number of bits used.

stored bits are treated as fixed point representations, with
the decimal point placed to achieve a similar range as in the
floating point domain. For example, in the 6-bit second di-
rection tilt used in the symmetric single mode, the decimal
point is before the least significant bit, giving a range of -16
to +15.5. In the other modes which use 4 bits for the sec-
ond direction tilt, a zero is inserted after the last of the four
bits to get a 5-bit integer value, which will be in the range
of -16 to +14. There are two exceptions to this rule: first, the
bits representing the color components are repeated which
ensures we are always able to represent both extreme points
0 and 255. Second, the width parameters use a non-linear
quantization, which in the 5-bit case is:

w = 0.005 x (100077 ) )

where ¢ is the stored value. In the four-bit case, the equation
is slightly altered to get a similar range of values:

w = 0.005 x (10007 )% ©)

4. Compression algorithm

Compression is done in two iteration stages, the first with
the parameters in the floating point domain and the second,
after parameter quantization, in the fixed point domain. We
use cyclic coordinate search [BSS93] to minimize the error
function, i.e., for each coordinate (i.e., parameter, such as

the width) we approximate the gradient with respect to that
parameter, and go a step in the opposite direction.

However, if the error function changes very rapidly, a
small step size is necessary in order to be guaranteed a lower
error in the new point. This small step may be smaller than
what it is possible to step in the quantized domain. To solve
that problem, we do the first round of optimization using
floating point arithmetic. After a global minimum has been
found, and cyclic coordinate search is no longer fruitful, we
quantize the values and do a second round of optimization in
the quantized domain. This is necessary since we will not be
able to reach the floating point position exactly when quan-
tizing it, so we must try a number of quantized positions
around that point.

For each 4 x 4 pixel block the following is performed:

1. Find the direction of the maximum variation. This is rep-
resented as the rotation angle, 6.

2. Use this rotation for initial orientation of the function.

3. For initial ColorA (c4) and ColorB (cp), we use the “min”
and “max”- colors along the maximum variation line.

4. Iteratively search over the entire floating-point parameter
space (ColorA, ColorB, rotation, offset, width and slope)
using cyclic coordinate search to minimize the image er-
ror.

5. Quantize all parameters.

6. Perform a second iterative search of the quantized param-
eters.

7. Choose the mode/function with the smallest error.

8. Pack into 64 bits.

To ensure a “somewhat” exhaustive search of the possible
parameter space, we ran 200 iterations of the floating point
parameter search and 6 iterations of the fixed point param-
eter search. This is of course a trade-off between compres-
sion time and performance. However, performance did not
improve much above 200 float / 6 fixed iterations. Our com-
pression algorithm compresses an image with 192 x 192 pix-
els in about 50 seconds. This is done with a multi-threaded
implementation on a MacPro with dual Intel quad core CPUs
at 2.26 GHz. Early on, we implemented the encoder in
OpenCL on an NVIDIA GPU and managed to get a speed
up factor of 42x compared to a single-threaded CPU ver-
sion. However, we decided to focus our programming efforts
on a multi-threaded CPU implementation, since the OpenCL
tools for debugging and profiling were rudimentary at best
(Mac OSX 10.6.1/2).

5. Decompression algorithm

The decompressor is much simpler and faster. It is designed
to have low complexity in order to ensure inexpensive hard-
ware implementation. To decompress a single pixel in a4 x 4
block, the following is done:

1. The rotation angle, 6, and offset parameter, c, are used
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Figure 7: Hardware design for a symmetric single decom-
pression unit. Linear interpolation is replaced with a LERP
unit as shown in the lower right of the diagram. Three lookup
tables are used for sin/cos, W and smoothfunc evaluation.

to reconstruct the edge line, ax + by +c = 0, where a =
cos(0) and b = sin(8).

2. For the pixel (x,y), calculate a signed distance, d = ax +
by + c. See Figure 4.

3. An interpolation value, i, is calculated using the selected
base function, i = f(d),i € [0,1].

4. iis then used to interpolate between ColorA and ColorB.

5. Finally, the slope parameter is used to add a luminance
ramp (along the edge line) to the output color.

For example, in the symmetric single case, Step 3 uses
the smoothstep function, s(d), as shown in Section 3.3. For
Step 5 the distance from the orthogonal line must be first
calculated using an orthogonal line equation. This orthogo-
nal distance is multiplied by a scaling factor to vary the color
along the edge line.

5.1. Fixed function decompression algorithm

We have implemented a fixed function version of the de-
compressor algorithm. This decompressor uses the functions
shown above with only fixed point addition and multiplica-
tion with 7 bits precision up until the final lerp, addition and
clamp, and several lookup tables for the more complex func-
tions. A possible hardware design is shown in Figure 7.

The scaling of the width of the smoothstep function re-
quires a division. We replace this division with a lookup of
m and a multiplication. The width value is represented
with 3 bits of integer and 7 bits of fractional precision.

The sin and cos used in computing the coefficients a and b
from the rotation angle parameter 6 in Step 1 are stored in a
lookup table with 128 entries and 7 bits per entry for values
ranging from 0 to 180 degrees.

We approximate the smoothstep equation, 3x% — 23, with
a piecewise linear function stored in a lookup table. This ta-
ble only stores the region between 0.5 and 1 since the func-

Original PVRTC Our

Figure 8: PVRTC handles smooth transitions well due to its
bilinear interpolation. Instead, compression artifacts mani-
fest themselves in other parts of the textures, as shown above.

tion is symmetrical. We then split the 0.5 to 1 region in half
recursively to create 8§ segments and store the end point val-
ues in a table with 7 bits of precision. When decoding we
find the segment by counting the number of leading zeros
and then interpolate the endpoints from the lookup table.

We have performed a rough hardware complexity esti-
mate, using estimates such as 2.2 gates per bit of a MUX
and 4.4 gates per bit of an ADD, where one gate equals a
2-input NAND. The result was a gate count somewhere be-
tween 4000 and 5000 for our decoder, including the ETC2
fallback. This is roughly 4 times the size of the ETC2 de-
coder and 5 times the size of a DXT1 decoder estimated in a
similar manner.

6. Results

We have tested our algorithms on radiosity normal maps
(RNMs) from two real games, namely Mirror’s Edge and
Medal of Honor from DICE/EA. While our main target is
smooth light maps, we also wanted to test the hypothesis
that our codec can also be used as a more generic texture
compression method. Therefore, we also used the 64 regular
textures which were used for evaluating ETC2 [SP07]. We
have compared our results against DXT1 and ETC2 for all
of the test sets. For DXT1 we used The Compressonator ver-
sion 1.50.1731, and for ETC2 exhaustive compression was
used. In both cases, error weights of (1,1,1) were used to
maximize PSNR. We contemplated also comparing to the 4
bpp version of PVRTC [Fen03], especially since its use of
bilinear interpolation handles smooth transitions well. Un-
fortunately, compression artifacts creep up in other places
instead as shown in Figure 8, and on the Mirror’s Edge test
set, it was 1.9 dB lower than DXT1 when compressed us-
ing PVRTexTool Version 3.7. For these reasons, we have ex-
cluded PVRTC from our results.

In the following subsections, we first present the results
for Mirror’s Edge, which is followed by Medal of Honor’s
results. In Section 6.3, we present results for the 64 regular
(non-light map) textures used to evaluate ETC2 and also a
test done with a set of 24 regular photos from Kodak. Finally,
we show zoomed-in crops of some textures in Figure 16.
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Figure 9: Texture compression results using a test set of 24 radiosity normal maps from the game Mirror’s Edge. Our method
is 0.7dB better than ETC2 and 2.8 dB better than DXT1 when all 24 results are combined together.

Figure 10: Original light maps from Mirror’s Edge, used for
training our algorithm. Images courtesy of Electronic Arts.

6.1. Mirror’s Edge

During the development of our algorithm (including bit dis-
tribution, profile function selection, quantization, and more),
we used nine representative crops from the game Mirror’s
Edge as a training set. These are shown in Figure 10, and for
all our results, these images were excluded in order to avoid
biasing the result. The remaining RNM images from Mir-
ror’s Edge were used to form a larger test set of 24 RNMs.

The results are shown in Figure 9. The combined PSNR
results for this set are 41.2 dB, 40.5 dB and 38.4 dB for our
method, ETC2, and DXT1, respectively. Our method consis-
tently performs better than ETC2 and DXT1 for this entire
test set. A few resulting images (with zoomed-in crops) from
this test set are shown in the top two rows of Figure 16. It is
interesting to note that for the images with lowest PSNR, the
improvement from our algorithm is almost zero compared
to ETC2. The reason for this is that when ETC2 and DXT1
perform poorly, the image content is usually rather noisy, in
which case our codec has little chance of improving quality.

We also generated mipmapped versions of these 24 RNMs
to investigate how our method behaves with low-pass fil-
tered and lower resolution versions of the RNMs. The re-

Results - Mirror’s Edge Test Set - Mipmaps

PSNR (dB)

35.3 353 | 352

Figure 11: Results for the mipmapped versions of the 24
image test set from Mirror’s Edge. Note that mipmap level 0
is the full resolution.

sults are shown in Figure 11. With decreasing resolution,
ETC2 gradually approaches our method and in the lowest
mipmap level, ETC2 is slightly ahead. This is expected since
the smooth areas get smaller the lower the resolution, and the
texture becomes gradually more noisy.

6.2. Medal of Honor

We compressed a set of 36 RNMs from the recent game
Medal of Honor from EA. The combined PSNR results were
37.06 dB, 37.01 dB, and 34.15 dB for our method, ETC2,
and DXT]1, respectively. As can be seen, our method was
only insignificantly better than ETC2 for this test set. In fact,
in 8 out of 36 images, the performance of our method was
lower than ETC2. Those images contain large numbers of
very small light maps baked into a large texture, as shown in
Figure 12. If we remove all light maps containing any sub-
textures smaller than or equal to 16 x 16 pixels, the relative
PSNR result changes: our method now has a 0.53 dB advan-
tage over ETC2 and 3.05 dB over DXT1. Thus, the Medal
of Honor test set clearly shows that our method is only im-
proving quality for relatively large textures, i.e., bigger than
16 x 16 pixels. This is not surprising given the nature of our
method, which depends on exploiting smooth structures.

Even for the textures where the proposed coder is worse
than ETC2, it is hard to spot flaws visually. This may be
because the textures are very small and quite noisy, and dif-
ficult for a human eye to understand what is the “correct”
structure. To give a feeling for the worst case, we automati-
cally found the 16 x 16 block which gave the worst perfor-
mance relative ETC2, and it is depicted in Figure 13. Note
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Figure 12: An example where our method performs rather
poorly from the Medal of Honor test set. This light map was
used for radiosity normal mapping in the game.

Original ETC2 Our
Figure 13: This shows the 16 x 16 block where our method
performed the worst (PSNR wise) compared to ETC2. This
is part of the texture in Figure 12 from Medal of Honor.

that it is only in blocks where the individual mode is chosen
that ETC2 can be at an advantage over the proposed codec,
since the latter includes a subset of ETC2.

6.3. Regular Textures and Photos

We also tested our method using the same set of regular tex-
ture as used in the evaluation of ETC2 [SP07]. This test set
is a broad mixture of photos, game textures, and some com-
puter generated images. While our algorithm was not de-
signed with such diverse textures in mind, it was still 0.34 dB
better than ETC2, and 1.25 dB better than DXT]1 for the full
resolution. The performance for the mipmapped versions
was similar to our previous mipmap results, but at the highest
level (smallest texture), ETC2 performed slightly better. The
combined results for the full resolution and the mipmapped
versions are illustrated in Figure 14. A few zoomed in exam-
ples from this test set are shown in Figure 16.

To compare against publicly available data, we tried our
method on the Kodak data set http://rOk.us/graphics/kodak/.
The results are shown in Figure 15.

7. Conclusion

‘We have presented a new codec for texture compression. It is
based on parameterized smooth profile functions, with a sub-
set of ETC2 as a fallback for noisy blocks. Our method often
generates images with much higher quality than competing
algorithms for light maps, and as a positive side effect, our
codec also increases the image quality on regular images.
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Results - Regular Texture Compression Test Set

Figure 14: Results from the regular test set of 64 texture
images. Our method is 0.34 dB better than ETC2 and 1.25
dB better than DXT1 for the full resolution. The results for
the mipmapped versions are in here as well.
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Figure 15: Results from a public test set of 24 photos from
Kodak. Combining the results from all 24 photos, our method
is 0.24 dB better than ETC2 and 1.65 dB better than DXT1I.
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