
Digital Video Over

TCP/IP

Master's Thesis by Jacob Str�om

Supervisor: Per Andersson

Lund Institute of Technology
Sweden

Email: J.Str�om: d91js@efd.lth.se

P. Andersson: pera@dit.lth.se

July 1995



Abstract

This paper describes an implementation of a digital video system for local area
networks using Ethernet and TCP/IP. The system consists of cameras connected
to a LAN through camera servers and personal computers attached to the same
net. The software development for both the camera server and the PC is de-
scribed, in particular the development of a greedy video compression technique
that is targeted for low bit rates with near static images and bit rates compara-
ble to MPEG1 with moving images. Furthermore, a way to transmit the images
without overloading the PC nor the network is designed and described.



CONTENTS 1

Contents

1 Introduction 2

2 System hardware 3

2.1 The camera server : : : : : : : : : : : : : : : : : : : : : : : : : : 3
2.2 The network : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
2.3 The personal computer : : : : : : : : : : : : : : : : : : : : : : : : 4

3 Solution to the communication problem 4

3.1 The congestion problem : : : : : : : : : : : : : : : : : : : : : : : 4
3.2 The measuring problem : : : : : : : : : : : : : : : : : : : : : : : 5
3.3 The control problem : : : : : : : : : : : : : : : : : : : : : : : : : 6

4 Video format and compression algorithm 8

4.1 Exploiting temporal redundancy : : : : : : : : : : : : : : : : : : 9
4.2 DC-thresholding : : : : : : : : : : : : : : : : : : : : : : : : : : : 9
4.3 Errors introduced by DC-thresholding : : : : : : : : : : : : : : : 12
4.4 DC-thresholding in MPEG : : : : : : : : : : : : : : : : : : : : : 12
4.5 Motion detection : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

5 Implementation 13

5.1 Software developing environment : : : : : : : : : : : : : : : : : : 13

6 Results and Conclusions 14

7 Acknowledgements 15

A The MPEG and VMP format 16

A.1 The coding of an MPEG I-frame/VMP image : : : : : : : : : : : 16
A.2 The VMP format : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
A.3 Modi�cations to the VMP format : : : : : : : : : : : : : : : : : : 19



1 INTRODUCTION 2

1 Introduction

In many buildings of today, a local area network is present. A video camera
server that connects directly to such a network and presents its images on a
personal computer (PC) connected to the same network has many advantages
over traditional dedicated video networks. Additional cable drawing is avoided,
the camera server can easily be moved and the images can be viewed from any
PC. The digital medium makes it possible to send not only image data but also
control information like dooropening or doorbell signals. In addition to that,
the digital video format makes it possible to implement features like automatic
storage of video sequences triggered by motion detection.

When constructing such a system, several problems appear. The network must
remain functional for other tasks also during video transmission. This means
that some kind of video compression technique must be used to reduce the use
of bandwidth. A compression algorithm that produces very little data if the
image is almost static is preferable. Even with video compression, the camera
server must have some bandwidth limitation to guarantee that it does not use
up all the network bandwidth. The camera server must also see to that no more
data is sent to the PC than it is capable of handle.

In this paper, the three areas shown in �gure 1 are covered. A solution to
the communication problem is presented, a compression algorithm is developed
and evaluated, and the process of the implementation is described.

communication algorithm

implementation

Figure 1: Areas covered by this paper: Solution to the communication problem,
algorithm evaluation and description of the implementation process.

The communication problem is divided into two main problems: The congestion
problem which is about preventing the camera server from overloading the PC
with images. This is solved using a simple acknowledgement from the PC for
each image. The other problem concerns bandwidth limitation, that is how to
prevent multiple camera servers from overloading the network. To solve this
problem, each camera server has a byte budget that is renewed each second. If
the camera runs out of bytes no more images are sent that particular second.

The compression algorithm developed is called DC-thresholding and uses DCT
transform coding just like MPEG1. The way DC-thresholding takes advantage
of temporal redundancy (similarities between adjacent images in a sequence)
is less sophisticated than in MPEG, but more streamlined to the hardware re-
quirements and still very useful. When compressing almost static sequences
DC-thresholding reduces the amount of data to be sent with more than 80%

1MPEG is a ISO/IEC standard (no 11172-2) for video compression.



2 SYSTEM HARDWARE 3

compared to the case when no regard to the temporal redundancy is taken. As
MPEG is becoming more and more accepted as the standard format for moving
images, a section in the report is devoted to describe how to incorporate video
sequences compressed with DC-thresholding into the MPEG-format.

The system was implemented in two programs, one for the camera server and
one for the PC, both written in the C/C++ language. The software was opti-
mized to meet the performance of an Intel 486DX66 platform running Windows.
The camera server and the PC communicated over a 10Mbit/s Ethernet LAN.

The next section describes the system hardware. A solution to the communica-
tion problem is presented in section 3. The compression algorithm is described
and evaluated in section 4. The implementation process is covered in section 5
and conclusions are presented in section 6.

2 System hardware

The hardware consists of three parts; the camera server, the network and the
personal computer.

2.1 The camera server

The camera server is a piece of hardware designed by Anders Hedberg and is
described in detail in his master's thesis [Hedberg95]. A shorter description is
presented here.

Etrax

Vitec

VM422

Philips

SAA7110

Video port

Ethernet port

Figure 2: Data ow in the camera server hardware.

The camera is connected to the video port, which is a normal video composite
connection. The analogue image is digitized by the Philips SAA7110 chip and is
then forwarded to the Vitec VM422 chip. The image now undergoes a discrete
cosine transform (DCT) and a quantization. The next stop for the data is the
Etrax, a combined I/O and CPU chip. The Vitec chip performs run length
coding at the same time as the data is transferred. This means that it encodes
a small sequence, sends a 16bit word and encodes again etc. Etrax compresses
the data even more using DC-thresholding before it is sent to the net through
the Ethernet port. Although the camera server is capable of sending images in a
variety of sizes, all software was written for a �xed size of 192x144 pixels, using
24bits/pixel colour.

2.2 The network

The network is a normal Ethernet local area network (LAN) with a bandwidth of
10 Mbit/s. Since the protocol used is TCP/IP, a routable protocol, the camera



3 SOLUTION TO THE COMMUNICATION PROBLEM 4

server will function over larger networks than ordinary LANs. For instance,
camera tra�c over the Internet is possible. Not to disturb other users of the
LAN, the video tra�c over the net is speci�ed to use no more than 10% of the
total bandwidth. The camera server is thus not allowed to produce more than
1000kbit/s.

2.3 The personal computer

The personal computer, or PC, is the last link in the chain. Although the cam-
era server is independent of the PC system used, the software in this project
has been developed and run on an Intel 486DX2/66 based PC running Win-
dows. The network card in the PC is connected via a bus that do not provide
direct memory access (DMA) data handling, i.e. the processor must be invoked
for moving the data between the bu�er memory on the network card and the
memory of the PC. The size of the bu�er on the network card is less than 3000
bytes. Apart from the network card, no extra hardware is used. The task of the
PC is to receive the data from the network, decompress it and display it on the
screen in real time. It must also send control information back to the camera
server to avoid congestion problems, set desired number of frames per second,
etc.

3 Solution to the communication problem

Two problems are to be solved in order to provide smooth communication. First,
the camera server must not send more images to the PC than it is capable of
handle. This is referred to as the congestion problem. Second, the camera
server must not overload the network by sending too much data on to the
LAN. Therefore a bandwidth limitation must be set up, and this results in
two problems. First the control problem which is the most obvious one; how
to stay within the bandwidth limitation? But before concentrating on this,
another problem must be solved: How do we measure the output bandwidth,
the measuring problem?

3.1 The congestion problem

The camera server must always see to that the PC can handle all the informa-
tion sent to it. This is for two reasons. First, the camera server do not know
the number of frames per second (fps) that the PC is capable of decoding and
displaying. It cannot send �ve frames per second if the PC only can present
four fps. The other reason is that the PC can be busy doing something else. For
example, the Windows operating system halts all running processes when the
user is moving or resizing a window. Serious congestion problems would occur
if the camera server would not be hindered to send images during that period
of time.

The easiest way of dealing with this problem is to let the PC send an acknowl-
edgement (ACK) for each image it receives, and prevent the camera server from
sending another image if the previous one has not been acknowledged. One
drawback with this method would be if the camera server spends too much
time waiting for acknowledgement, and therefore degrades system performance.
The solution could be to implement a so called window. This means that the
camera server has a credit of say �ve images. When it sends an image, the
credit decreases by one. Every time it receives an acknowledgement, the credit



3 SOLUTION TO THE COMMUNICATION PROBLEM 5

increases by one. When the camera server runs out of credits, it is prevented
from sending any more images. This would make it possible for the camera to
send images to the PC without waiting for the acknowledgement, and yet be
sure that no more than �ve images were to be bu�ered in the network hardware
of the PC.

For such a windowed approach to be successful, the PC must be able to receive
data from the network while decompressing the images without time penalty
for the communication. This can be done if the network card uses DMA, i.e. it
is writing the data directly to the right place in memory without invoking the
processor. If so, the PC can start decompressing the next image immediately
after having �nished the last one, and a windowed transmitting procedure will
indeed boost the performance of the system. The network card speci�ed did
however not provide DMA, and the data receival and the decompression must
therefore be made sequentially. Hence a windowed approach would not increase
performance. Therefore the �rst method (with a simple ACK) was used.

The �rst approach used was to perform the operations in the following order:

Camera Server PC

grab image wait for image
send image receive image
wait for ack present image
get ack send ack

This resulted in bad performance since the PC was stalled during the grabbing
of the image, which is a fairly time consuming process. The camera server also
had to wait for the PC to present the image. By grabbing the image before
waiting for acknowledgement the performance was sped up considerably. The
two time consuming tasks, image grabbing and image presenting, could now be
done simultaneously, as shown in the table below:

Camera Server PC

grab image present image
wait for ack send ack
send image receive image

One disadvantage with this approach was that the image was further delayed.
However, the increase in framerate was considered more important.

3.2 The measuring problem

To be able to control the bandwidth usage, the camera must be able to measure
it properly. As the camera �rst grabs the whole image and then sends it, the
data stream will be quite bursty, according to �gure 3: Most of the time the
camera server is idle, but when it is sending data, it uses up all the bandwidth of
the network. Trying to control such a dataow to get an even stream of packages
and hence a constant use of bandwidth seems like a hard problem. Fortunately,
this does not have to be done. The only thing to prevent is tra�c overload,
and this can be done by having a low average tra�c. It is not a problem with
high peaks of bandwidth usage as long as the average bandwidth usage is well
below the capacity of the net. Hence, the key to the problem is to control, and
measure, the average use of bandwidth.



3 SOLUTION TO THE COMMUNICATION PROBLEM 6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

seconds

nu
m

be
r 

of
 p

ac
ka

ge
s

Figure 3: The output of the camera server. Each image sent causes a nail in
the diagram.

In the implementation of the camera server, a counter is incremented with the
number of bytes sent in each packet. Each second, this counter is read and the
average use of bandwidth is calculated, whereafter the counter is reset to zero.
Experimental results verify that this gives a stable and reliable measuring of
the bandwidth usage. One disadvantage with this is that it only measures the
raw data. It does not measure packet header overhead, nor bandwidth usage in
the form of retransmissions. Since a user of the system must have this in mind
when setting the bandwidth limitation, it could be advantageous to have an
estimate of the amount of overhead information that is sent per raw byte. That
is, the ratio rawdata+overhead

rawdata
is of interest. This ratio is however impossible to

calculate as it is not static. If the raw data perfectly �t the size of one packet,
the minimum overhead ratio is achieved (left part of �gure 4). If, however, the
raw data contains one byte to much to �t, two headers are required, almost
doubling the overhead, as seen in the right part of �gure 4.

Header

Raw data

Header

Raw data

Header

extra byte

Figure 4: The amount of overhead data per byte is not constant.

This is close to the worst case ratio, which of course can be used as an estimate.
The next problem concerns retransmissions. Due to the sending procedure of
the CSMA/CD, a packet can theoretically collide, and therefore be resent, an
in�nite number of times. Due to these problems, this subject was not considered
to fall within the scope of this master's thesis, and the user thus has to live with
estimations of raw bandwidth use only.

3.3 The control problem

The reason to control the output of the camera server is that it must be made
sure that the camera servers attached to the net will not overload the system.
This is done by giving each camera a maximum bandwidth limit. If the sum of



3 SOLUTION TO THE COMMUNICATION PROBLEM 7

the limits is well below 10 Mbit/s, the system will be secure.

To be able to control a system, both a measuring variable and a controlling
variable are needed. The measuring variable in this case is undoubtly the band-
width usage, but when choosing the control variable, at least two are possible;
quality and framerate.

Quality: The Vitec chip gives the opportunity to vary the quality. Choos-
ing larger quantization steps in the DCT compression procedure results in more
zeroes in the DCT-matrix and thus fewer bytes of image data.

Framerate: The usage of bandwidth is directly proportional to the number
of frames per second (fps). Lowering the fps, results in a lower use of bandwidth.

In the implementation the framerate was used as control variable for several
reasons. First, it is easier to implement. Second, even though setting the lowest
quality, the data stream does not go to zero. This means that some form of
framerate control must be used anyway for low limits. Thirdly, a reduced fram-
erate lowers the need for computational power of the PC when decompressing
the images. Even though this is true for quality reductions as well to some
extent, the e�ect is not that big. If zero frames are sent per second, they will
not need any processing power from the PC at all. However, if you send images
of the lowest quality to the PC, they will use up to 80% of the processing power
required for decompressing and displaying images of the highest quality.

When controlling the output bandwidth, two approaches can be used. The
�rst is to look at the limit as the value the bandwidth usage should have. If the
usage is less than the limit, the camera server will try to increase it, and if the
usage is more than the limit, it will try to decrease it. In order not to exceed
the limit, the setpoint for the control algorithm could be for instance 80% of
the limit. There are several problems with this approach. One is depicted in
�gure 5. At (A) in the �gure, a network disturbance prevents the camera server

A

C

B

limit not to exceed

setpoint for control algorithm

camer server tries 
to increase fps

go down
network may

time

network load

usage
bandwidth

Figure 5: When the network gets heavy loaded the control algorithm will try to
increase the fps.

from sending. The control algorithm will discover a decrease of the bandwidth
usage, and try to increase it, (B), by sending more data to the already disturbed
net. This is the opposite of the desired behaviour { when the network is heavy
loaded, the camera tries to send more data. This erroneous behaviour can be
avoided by measuring, not the data sent to the net, but the data produced by
the compression algorithm. Another problem illustrated in �gure 6 will however
still occur. When the image sequence is almost static (A), the amount of data



4 VIDEO FORMAT AND COMPRESSION ALGORITHM 8

produced by the compression algorithm gets very small. The control algorithm
will then increase the framerate (B), and settle to a very high value yielding
the desired bandwidth usage. When the image starts to move again (C), the
camera server will try to send this high number of frames per second to the net,
and the limit will probably be exceeded.

A

B

C
bandwidth
usage

image get static

image starts
to move

limit not to exceed

setpoint for
control algorithm

controler compensates
by increasing fps

time

Figure 6: When the sequence is static, the fps will be increased to compensate
for this. When the images starts to move again, the bandwidth use explodes.

To avoid these problems, another approach is used. Here, the limit is more like
an emergency brake: It will always work, but since it is not used very frequently,
the behaviour need not be nice. The user at the PC decides a bandwidth limit
not to exceed, and a desired number of frames per second. The limit is set so
high that video with the speci�ed framerate will not normally reach the limit.
The camera server has a budget of a certain number of bytes per second, stored
in a variable. Before sending each image, the variable is decreased by the size
of the image in bytes, and if the result is less than zero the image is not sent.
The variable is reset every new second. The method is illustrated in �gure 7.

used
bytes skipped images

limit not
to exceed

time (s)

1

Figure 7: When the camera server has used the whole byte budget, it cannot
send more images that particular second.

This approach gives a straightforward and secure solution to the problem. How-
ever, if too low a limit is set, bad behaviour will be the result. The algorithm
will then send a small number of images rapidly, followed by a long pause.

4 Video format and compression algorithm

The Vitec video compression chip delivers the image in the VMP format, which
is di�erent from MPEG. As MPEG achieves better compression ratios than
VMP and is a common standard, it would be advantageous to send MPEG
data from the camera. To evaluate the performance of the data communication
however, VMP is as useful as MPEG, and hence the VMP format was used in the



4 VIDEO FORMAT AND COMPRESSION ALGORITHM 9

communication. A translation between VMP and MPEG was thereby avoided.
Another advantage was that a decompression program for the VMP format was
easier to implement than a MPEG dito. A more thorough description of the
MPEG and VMP formats can be found in appendix A.

4.1 Exploiting temporal redundancy

In many video sequences, parts of the image are static throughout the sequence.
For instance, a typical scene for a surveillance camera is a person walking in an
empty corridor. The person only occupies a small part of the image, and the
rest is static. Another example is a video telephone sequence, with a moving
head in front of a static background. In situations like this, the method to code
each frame separately results in signi�cant amounts of temporal redundancy in
the code { the background is sent over and over again. It would be more advan-
tageous to encode the images di�erently, so that the static parts of the image
would not have to be resent.

As the Vitec video compression chip does not provide di�erential encoding, this
cannot be done. An alternative to di�erential encoding is to send only those
blocks that has changed in respect to some metrics. The decision which blocks
are to be sent must then be made by the Etrax chip inside the camera server.
The most correct way of determining if a block has changed is to calculate the
summed root mean square error, RMSE:

RMSE =

vuut 1

64

8X
i=1

8X
j=1

(Aij �Bij)2

A and B are the blocks from the previous and current images respectively. If
the RMSE exceeds a given threshold value, the block is considered changed.
As the Vitec chip delivers the blocks in coded form, the Etrax has to decode
the blocks in order to calculate the RMSE. The previous image also has to be
stored in memory. This results in a costly procedure both concerning computa-
tion time and memory, and is not feasible with the hardware con�guration used.

4.2 DC-thresholding

Instead of using RMSE, another metric, based on DC-values2 only, is used to
determine if a block has changed: the absolute DC error, ADCE.

ADCE = jA11 � B11j

The block is thus considered to have changed if the DC-component of the cur-
rent and previous block di�ers more than a given threshold value. We refer
to this technique as DC-thresholding. As the DC-component is stored without
quantization and sent �rst in the data stream of a block, the comparison is very
straightforward and can be done without using up much computational capac-
ity. The memory requirements are also very moderate with the DC-components
using only 864 bytes of storage compared to 40.5 KB for a whole image, calcu-
lated on an image size of 192x144.

2The DC-value is proportional to the mean value of the block, see Appendix A for further
information.



4 VIDEO FORMAT AND COMPRESSION ALGORITHM 10

Test images show that a threshold value of 7 used on almost static sequences
results in a boost of the compression ratio by a factor of �ve. Another advan-
tage of this method is that the time to decode a single frame on the PC is
reduced by 50%. This is mainly due to the fact that the PC avoids doing the
time consuming inverse discrete cosine transform (IDCT) on the blocks that
are not sent. To illustrate the result, two test sequences are investigated. The
�rst contains very little movement and illustrates the advantage of using the
DC-thresholding technique on sequences that are almost static. In the second
sequence, a large part of the image is moving. This test sequence is provided
to show that the technique is useful even for non static images. Both sequences
use a threshold value of 7 for the DC-thresholding. The same value was used in
the implementation of the camera server as it, after long time evaluation, seems
to be su�ciently high to give good compression results and su�ciently low to
avoid too much degradation of the image.

The �rst sequence consists of the two consecutive images in �g 8 and �g 9,
the second one occupying 5538 bytes of storage, yielding a compression ratio
of 15.083. Even though they seem quite similar to the naked eye, there is a
di�erence between them. This di�erence is calculated and plotted in �gure 10.
The DC-thresholding algorithm now decides which blocks to send in order to
produce an image that is similar to the second image in the sequence (�g 9).
The selection is shown in �gure 11. The image produced, shown in �gure 12,
consists of 1052 bytes which means a reduction with over 80%, or a compres-
sion ratio of 78.84. The error introduced by the DC-thresholding, that is the
di�erence between the image produced (�g 12) and the second image (�g 9), is
plotted in �gure 13.

Figure 8: First image in
the sequence.

Figure 9: Second image,
5538 bytes.

Figure 10: Di�erence be-
tween 1st and 2nd.

Figure 11: Blocks se-
lected by the DC thresh-
olding algorithm.

Figure 12: 2nd image
using DC thresholding,
1052 bytes.

Figure 13: Error intro-
duced by DC threshold-
ing.

3compression ratio = original size
compressed size

= 192�144�3
5538

= 15:08



4 VIDEO FORMAT AND COMPRESSION ALGORITHM 11

The di�erential images are calculated as:

Di;j = CLAMP(0; Aij � Bij + 128; 255)

where A and B are the starting images and the CLAMP operator sees to that
the value sticks to the range [0; 255]. Due to he +128 term, zero di�erences will
be represented with a gray colour.

The next sequence (�g 14 & 15) contains more movement. This is easily rec-
ognized in the di�erential image 16. This means that the DC-thresholding
algorithm must send more blocks as seen in �gure 17. The resulting image (�g-
ure 18) is 3680 bytes in size4 which is to be compared to 5646 bytes (�g 15) if
DC-thresholding had not been used { a reduction with 35%. This lower value
is due to the movement in the sequence. These extra bytes are well spent { the
error introduced by the DC-thresholding, shown in �g 19, remains low.

Figure 14: First image in
the sequence.

Figure 15: Second image,
5646 bytes.

Figure 16: Di�erence be-
tween 1st and 2nd.

Figure 17: Blocks se-
lected by the DC algo-
rithm.

Figure 18: 2nd image
using DC thresholding,
3680 bytes.

Figure 19: Error intro-
duced by DC threshold-
ing.

To be able to send empty blocks the VMP-format (as described in appendix A)
has to be slightly modi�ed. If a sequence of blocks are considered static, they are
encoded as 1001rrrrrrrrrrrr, where 1001 are control bits to di�er the word from
an ordinary DC-value (which starts with 1000), and r is the number of blocks
that are static. For totally static images, such as an empty corridor, each frame
could theoretically be represented with a single 16 bit word for each colourplane
(i.e. Y, Cr and Cb), making the bandwidth usage drop to 6 � 48 = 288 bps5.
In reality however, image noise changes the DC-values su�ciently to trigger the
DC-thresholding mechanism. A more reasonable estimation of bandwidth usage
transmitting static images would be 1000 bytes per image, or 47Kbps for the

4The compression ratio has improved from 14 to 23.
5Calculated with 6 frames per second.



4 VIDEO FORMAT AND COMPRESSION ALGORITHM 12

same 6-fps-sequence. Without DC-thresholding the average number of bytes
per image is 5500 resulting in a bandwidth of 256Kbps.

4.3 Errors introduced by DC-thresholding

The way that the DC-thresholding compresses the data is by approximating
part of an image with the same part in an earlier image. If they are not ex-
actly the same, which they never are, this introduces error. What is the visual
impact of these errors? They can appear as traces after moving objects. When
an object changes large parts of a block, its DC-component changes and the
block is sent (�gure 20). When the object moves out of the block, the moment
before disapearing completely, it may just touch the block so that only a few
pixels are altered (�gure 21). In the next frame, the object is outside the block,
but the DC-component has not changed enough since the last frame, so the
block will not be resent (�gure 22). Even if the object does not leave a trace,

block object

block sent

Figure 20: First image,
block sent.

Figure 21: Second im-
age, block sent.

Figure 22: Third image,
block not sent.

the movement can look somewhat peculiar. The �rst time an object touches a
block, it may not change enough pixels to trigger the DC-thresholding mech-
anism. The block is not sent and the object seems to be shorter. Suddenly
enough pixels are changed by the object to trigger the algorithm, and the block
is sent. The object seems to grow in the moving direction. This enlonging
and shrinking movement can make distant lorrys to look like larvae! However,
this and the previous problem are only appearent on distant objects, and is
therefore not that annoying. Possible remedies may be to periodically ush old
blocks through bypassing the DC-thresholding algorithm and thereby sending
all blocks. As a matter of fact this is likely to happen spontaneously, as weather
changes inuences the lighting conditions so that all DC-values change at once.

Another type of error is when the content of a block changes dramatically but
the DC-value happens to be the same. In �gure 17 it is possible to notice such
an error made on the persons right arm (left in the picture). The e�ect of this
erroneous behaviour is mildered by the fact that such blocks tend to blend into
the context since the mean value (i.e. the DC-value) is correct.

4.4 DC-thresholding in MPEG

The DC-thresholding technique makes it possible to exploit temporal redun-
dancy. The method may be blunt and suboptimal, but it has the advantage
of being fast and easy to implement. Today most low cost real time MPEG
encoders completely disregard the similarities between the images, each frame



5 IMPLEMENTATION 13

is coded separately. Very little extra hardware would make it possible to do
DC-thresholding as well, and thereby increasing the value of the product. The
technique must then be made compatible with the MPEG format. An MPEG
sequence can contain I and P frames6. In the I-frames, all macroblocks are I-
blocks, i.e. they consist of encoded DCT coe�cients without reference to other
images which is illustrated in �g 23. In the P frames, the macroblocks can be

I
I

I

I I I
III

I
I I I I I I

I
I I I I

I
I I I

I I
II

I I I I I I
II I I II

P
P

P

P
P

P

P P P
P

P

I
I

I

I

I

P
P
P

I

I
I

I

P
PP P I

I-frame P-frame

Figure 23: I-frames can only contain I-blocks. P-frames can contain I-blocks,
P-blocks and skipped blocks.

I-blocks, P-blocks, or skipped macroblocks, as seen in the same �gure7. A P-
block includes a reference to a piece of an earlier image that looks almost like
the block to code. It also contains a DCT encoded error correction that is DCT
encoded. A skipped block is interpreted as a P-block with reference to the same
block in the previous image, and with no error correction. A DC-thresholded
image is coded as a P-frame, with the selected macroblocks being coded as I-
blocks and the other blocks coded as skipped blocks.

If this procedure went on, all frames would be P-frames. This is not allowed in
the MPEG standard. Therefore the MPEG/DC-thresholding encoder must pe-
riodically bypass the DC-thresholding step to allow an I-frame to be produced.

4.5 Motion detection

A spin o� e�ect of the DC-thresholding technique is a simple way of making
motion detection. If the number of blocks that has changed exceeds a certain
threshold value, the image is considered changed. The PC application can be
programmed to automatically enlarge or ash the window containing the moving
image. If no operator is available, the video sequence can be stored to disk etc.

5 Implementation

5.1 Software developing environment

The camera server was programmed in C++ using a gcc version that produced
Etrax- assembly code. A TCP/IP stack protocol was already implemented. The
developing environment on the PC was Microsoft Visual C++ (MSVC) and the
TCP/IP communication was done through Winsockets. To handle incoming
data correctly, the winsocket was programmed to create a Windows message
when data was available. The program was then to jump to a procedure that

6The B and D frames also possible are not interesting in this context.
7Skipped macroblocks are shown as empty squares in the �gure.



6 RESULTS AND CONCLUSIONS 14

processed the incoming data.

In order to test the PC program, it was constructed to communicate with an-
other PC running the same program. When this worked properly, the program
was easily modi�ed to communicate with the camera server.

The camera server was now programmed to communicate with the PC. As the
functionality of the PC program was already veri�ed, bugs in the system had
to originate from the camera server software, which made it easier to make the
system work.

An interesting issue was the performance of the system { the higher data rate,
the better image quality could be expected. Maximum performance was a data
rate of 1Mbit/s. To verify the presumption that the camera server was the
bottleneck, a PC to PC performance test was also made, yielding 2Mbit/s.

The software for presenting the image on the PC was then written. The blocks
building up the picture were �rst decoded, then processed by an inverse discrete
cosine transform (IDCT). This resulted in the three colour planes Y, Cr and
Cb which, after upsampling of the latter two, could be transformed into RGB
and drawn as a bitmap on the screen. The inverse discrete cosine transform
procedure was taken from the Berkeley MPEG software and incorporated in
the program.

The performance of the decoding and on-screen-presentation of the images were
critical. Without any optimization of the code, a grayscale image was decoded
and drawn to the screen in 0.98s, giving a theoretical maximum framerate of
1.02 frames per second8. By optimizing the code in di�erent ways the framerate
rose to 6.25 fps, and by decoding only those blocks that had changed, the fram-
erate almost doubled to approximately 12, depending on the threshold value
and the type of image.

When going into colour the framerate dropped to 1.2 fps and a new era of
optimization started. One way of optimizing was to draw only the area of the
screen that had changed, another was to use matrixes smaller than 64Kb which
is the memory segment length of the Intel processors. Much time was consumed
on the transformation from YCrCb back to RGB. By calculating in �xpoint-
instead of oating point- arithmetics, and by using precalculated tables instead
of multiplying, the framerate was increased to 9.9 fps for the test sequence used.

6 Results and Conclusions

Three areas have been described in this paper; the communications problem,
the algorithm developed and the implementation process. In the �rst area, a
solution to the problem has been presented. In the second area, a technique
for improving the compression ratio over I-frame-MPEG has been found that
is useful, fast and of low complexity, both concerning hardware and software.
In the third area, an implementation has been made that worked well, with
a performance of 2-3 frames per seconds in the �rst hardware and software
iteration. Possible improvements would be to alter the camera server hardware
in order to make DMA handled image grabbing possible. This, combined with
DMA image receival at the PC side would enhance performance.

8The time to transfer the image from the camera server is not included here.



7 ACKNOWLEDGEMENTS 15

7 Acknowledgements

I would like to thank Sven Ekstr�om at Axis for his secure guiding through the
jungle of the Windows operating system. I would also like to thank Kenny
Ranerup, my additional supervisors Martin Gren and Carl-Axel Petersson and
a large number of other persons working at Axis. Finally, I would like to thank
my supervisor Per Andersson and my friend Tomas M�oller for support.



A THE MPEG AND VMP FORMAT 16

A The MPEG and VMP format

This section serves as an introduction to the MPEG and VMP formats. It is
a step-by-step explanation of how to code an image in the two formats. In the
MPEG format, three types of frames are possible, I-, B- and P-frames. The
coding of an I-frame resembles the coding of a VMP format image very much,
so they are presented side by side. For information about the B- and P-frames,
look above in the section \DC-Thresholding in MPEG" or consult [mpeg93].

A.1 The coding of an MPEG I-frame/VMP image

Both when coding MPEG I-frames and VMP format images, the image is �rst
transformed from the RGB space into the YCrCb space through a matrix mul-
tiplication (left part of �gure 24):

0
@

Y
Cr
Cb

1
A =

0
@

0:2990 0:5870 0:1140
0:5000 �0:4187 �0:0813
�0:1687 �0:3313 0:5000

1
A
0
@

R
G
B

1
A

In the latter colour representation Y is the luminance and Cr & Cb represent
colour. As the human visual system (HVS) is more sensitive to changes in the
luminance than in the chrominance, it is possible to encode the chrominance
less accurate without degrading the image much. This is done by subsampling
the colour planes Cr and Cb, i.e. throwing away every second pixel in both the
x and y direction (right part of �gure 24).

 Y
 Cr

Cb

matrix multiplication
r

g
b

 Y
 Cr

 Cb
subsampling

Figure 24: The change of colour representation followed by subsampling.

Now the colour planes are divided into blocks of 8�8 pixels. Since the colour
planes are subsampled, four luminance blocks are needed to cover the same area
as one chrominance block (�gure 25). Therefore four luminance blocks and two
chrominance blocks together form a macroblock, which thus covers a 16�16
pixel area in the original image.

1 2
3 4

5

6

Y-plane

Cr-plane

Cb-plane

Figure 25: The �rst macroblock consists of these six 8�8 blocks.

Each 8�8 block is now transformed into the frequency domain using a discrete



A THE MPEG AND VMP FORMAT 17

cosine transform (DCT). This results in a matrix of frequency components. Here
is an example 8� 8 block:

0
BBBBBBBBBB@

139 144 149 153 155 155 155 155
144 151 153 156 159 156 156 156
150 155 160 163 158 156 156 156
159 161 162 160 160 159 159 159
159 160 161 162 162 155 155 155
161 161 161 161 160 157 157 157
162 162 161 163 162 157 157 157
162 162 161 161 163 158 158 158

1
CCCCCCCCCCA

After DCT transform, the following matrix is obtained:

0
BBBBBBBBBB@

235:6 �1:0 �12:1 �5:2 2:1 �1:7 �2:7 1:3
�22:6 �17:5 �6:2 �3:2 �2:9 �0:1 0:4 �1:2
�10:9 �9:3 �1:6 1:5 0:2 �0:9 �0:6 �0:1
�7:1 �1:9 0:2 1:5 0:9 �0:1 0:0 0:3
�0:6 �0:8 1:5 1:6 �0:1 �0:7 0:6 1:3
1:8 �0:2 1:6 �0:3 �0:8 1:5 1:0 �1:0
�1:3 �0:4 �0:3 �1:5 �0:5 1:7 1:1 �0:8
�2:6 1:6 �3:8 �1:8 1:9 1:2 �0:6 �0:4

1
CCCCCCCCCCA

The top left element of this matrix is proportional to the mean value of all
pixels values in the block and is called the DC element. The other elements
represents the di�erent frequency components of the block, with elements near
the DC element representing lower frequencies and elements near the bottom
right corner representing higher frequencies.

The human visual system is more sensitive to lower than to higher frequency
components. This means that elements in the bottom right corner can be sup-
pressed without degrading the image much. This is done in the next step, the
quantization. The matrix is now divided with a quantization matrix that has
higher numbers in the bottom right corner and lower numbers near the DC-
value. Here comes an example of such a matrix:

0
BBBBBBBBBB@

1 13 13 13 13 13 50 50
13 13 13 13 13 50 50 50
13 13 13 13 50 50 50 50
13 13 13 50 50 50 50 100
13 13 50 50 50 50 100 100
13 50 50 50 50 100 100 100
50 50 50 50 100 100 100 100
50 50 50 100 100 100 100 100

1
CCCCCCCCCCA

After integer division, most of the coe�cients are now zeroed:

0
BBBBBBBBBB@

235:6 0 �1 0 0 0 0 0
�2 �1 0 0 0 0 0 0
�1 �1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
CCCCCCCCCCA



A THE MPEG AND VMP FORMAT 18

Now the data is to be run length encoded, to exploit the large number of zeroes.
As most of the zeroes are situated in the bottom right corner, it is advantageous
to code the elements in a zig-zag order, as seen in �gure 26. The DC value, be-
ing the most important component for the HVS, is coded separately. The other
coe�cients are coded as two-tuples, (r,l), where r is the number of zeroes pre-
ceding the value l. The array above is therefore coded as: 235.6, (0,-2), (1,-1),
(0,-1), (0,-1), (1,-1) (56,0).

position

end
position

start

Figure 26: The zig-zag order.

Up to now, the description has been valid for both MPEG I-frame and the VMP
format. The �rst di�erence is that in the MPEG format, any quantization ma-
trix can be used, whereas the VMP format creates a quantization matrix from
only 4 values using the zig-zag order. The top left element is always one. The
following 15 elements in the zig-zag order are set to the second of the four val-
ues above. The next 26 elements are set to the third value, and the rest of the
elements are set to the fourth value. The quantization matrix in the example
above is created using that technique.

The way to encode the run length tuples also di�ers between the two formats.
The MPEG format uses bit words of variable length that are looked up in a �xed
table. The example above results in the following bitstream: 01001 (0,-2) 0111
(1,-1) 111 (0,-1) 111 (0,-1) 0111 (1,-1) 10 (end of block). The DC-component is
encoded separately. For further information, consult [mpeg93].

A.2 The VMP format

The VMP format is somewhat simpler. First, the DC component is coded sep-
arately using a word of 16 bits: 1000vvvvvvvv where v is the unquantizised
twelve bits of the DC component. Then the run length tuples are coded. If the
value l in the tuple (r,l) is in the range of [-8,7] the tuple is coded as a byte
0rrrllll where the r bits encode the number of zeroes preceding the value coded
by the l bits. If the value is not in the range of [-8,7] the tuple is coded as a
word: 1rrrllllllllllll using 12 bits of value information. When the there are only
zeroes left, or when all tuples have beed encoded, an end of block word is in-
serted having the bit pattern 1000100000000000. If the data stream is not word
aligned, a padding byte of 10000000 is inserted before the end of block word.
The example (r,l) tuples would be coded as: 1000011101011100 (DC) 00001110
(0,-2) 00011111 (1,-1) 00001111 (0,-1) 00001111(0,-1) 00011111 (1,-1) 10000000
(padding byte) 100001000000000000 (end of block).



REFERENCES 19

Whereas the MPEG format saves one macroblock at a time, the VMP for-
mat saves colourplane for colourplane, starting with the blocks building up the
Y plane. Preceding the block information is a small header containing this
information:

� image width in pixels (2 bytes)

� image height in pixels (2 bytes)

� the four values building up the quantization matrix (4 bytes)

� pointers to the three colour planes (4*3 = 12 bytes)

A.3 Modi�cations to the VMP format

In order to simplify the implementation, a �xed header was used. The image
size was 192x144 and the quantizing values were 1,9,9,9. As the image was
decompressed sequentially, the pointers for the colour planes were not needed.
Thus the whole header was now redundant and therefore not sent. In order
to know how much data every image contained, another header was inserted
containing the image size in bytes, and the images data structure actually sent
was:

� image size in bytes (2 bytes)

� Y-plane

� Cr-plane

� Cb-plane

References

[Hedberg95] Anders Hedberg. Netvision { A Hardware Platform for Network

Video, Master's Thesis, University of Lule�a, Sweden, July 1995

[mpeg93] ISO/IEC Standard 11172-2. Information technology { Coding of

moving pictures and associated audio for digital storage media at

up to about 1,5 Mbit/s { Part 2: Video, International standard,
First edition 1993-08-01.


