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Abstract

Many classes of images contain some spatial regions which are more important than other

regions. Compression methods which are capable of delivering higher reconstruction quality

for the important parts are attractive in this situation. For medical images, only a small

portion of the image might be diagnostically useful, but the cost of a wrong interpretation is

high. Algorithms which deliver lossless compression within the regions of interest, and lossy

compression elsewhere in the image, might be the key to providing e�cient and accurate image

coding to the medical community. We present and compare several new algorithms for lossless

region-of-interest (ROI) compression. One is based on lossless coding with the S-transform, and

two are based on lossy wavelet zerotree coding together with either pixel-domain or transform-

domain coding of the regional residual. We survey previous methods for region-based coding

of medical images.

Abstract

Un bon nombre d'images contiennent des r�egions dans l'espace qui sont plus importantes

que d'autres. Les m�ethodes de compression qui sont capables de restituer la meilleure qualit�e

de reconstruction pour ces parties importantes deviennent alors tr�es int�eressantes. Dans le

cas des images m�edicales, seulement une seule portion d'image peut être utile pour �etablir un

diagnostic, mais le cout d'une mauvaise interpr�etation peut être tr�es �elev�e. Les algorithmes

qui e�ectuent une compression sans perte dans les r�egions int�eressantes et une compression

avec pertes partout ailleurs, pourraient être la solution pour fournir un codage d'image e�cace

et pr�ecis pour le domaine m�edical. Nous pr�esentons et comparons plusieurs algorithmes pour

la compression sans perte des r�egions d'interet (ROI). L'un est bas�e sur le codage sans perte

avec la transformation en S, et deux autres sont bas�es sur le codage avec pertes (ondelettes

"zerotree"); parmi ces 2 derniers, en codant les residus par r�egion, l'un fonctionne dans le
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domaine des pixels, l'autre dans le domaine de la transform�e par ondelette. Nous balayons

rapidement les methodes deja publi�ees pour le codage bas�e sur le principe de r�egions.
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1 Introduction

The easy, rapid, and reliable digital transmission and storage of medical and biomedical images

would be a tremendous boon to the practice of medicine. Patients in rural areas could have con-

venient access to second opinions. Patients readmitted to hospitals could have earlier imaging

studies instantly available. Rather than waiting for others to �nish with hardcopy �lms, medical

and surgical teams collaborating on patient care could have simultaneous access to imaging stud-

ies on monitors throughout the hospital. This long-term digital archiving or rapid transmission

is prohibitive without the use of image compression to reduce the �le sizes. For example, a sin-

gle analog mammogram might be digitized at 4096 � 4096 pixels � 16 bpp. This �le would be

over 33 megabytes (MB). In lossless compression, the original image is exactly recoverable from

the compressed format; with lossy coding, it is not, but vastly greater compression is achieved.

However, lossy schemes are viewed with suspicion by many members of the medical and scienti�c

community; image alteration might entail loss of diagnostic or scienti�c utility. Many physicians

feel they cannot trust lossy compression which mostly delivers exquisite quality and yet which can,

without warning, introduce medically unacceptable artifacts into the image. After segmenting an

image into regions (either automatically or manually) it is possible for a compression algorithm to

deliver di�erent levels of reconstruction quality in di�erent spatial regions of the image. One could

accurately (losslessly) preserve the features needed for medical diagnosis or for scienti�c measure-

ment, while achieving high compression overall by allowing degradation in the unimportant regions.

Such coding, which we term regionally lossless coding or lossless-ROI coding, may be the key to

having physicians and scientists entrust image data to compression.

In radiology, the discussion of image compression often divides into three separate uses: com-
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pression before primary diagnosis (for rapid transmission), compression after primary diagnosis (for

long-term archiving), and compression for database browsing (where progressivity would be useful).

Compression occurring before primary diagnosis is the most controversial use of lossy compres-

sion. However, it might prove useful in cases where the interpreting radiologist is at a remote site

and lossless compression cannot be used. For example, the patient's situation might require such

rapid action that the time for lossless transmission of original images cannot be countenanced, or

the bandwidth for real-time lossless video transmission might not be available. Compression after

primary diagnosis might be useful for long-term digital archiving. Here it is easy to imagine how

region-based coding might play a role, since the primary interpretation of a �lm can perhaps be

used for providing the region segmentation. A third use of compression is for providing progressive

transmission capabilities when receiving images over a network. With progressive coding, image

quality incrementally improves as more bits arrive. Early versions of an image can be good enough

to show that the image is not of interest; transmission can then be `nipped in the bud.' Progressive

codes can be designed to be eventually lossless, so that if the user waits long enough (e.g., 30 sec-

onds) the image will be exactly equal to the original, but over the short term (e.g., 0.5 seconds) the

image would already be useful. Region-based methods that take image content into account might

deliver a useful version more rapidly.

As an example, Figure 1a shows an MR brain scan with cancerous tumors circled. Following

its use in primary diagnosis, this image could be compressed so as to perfectly preserve this region.

Allowing graceful degradation in the rest of the image could yield high compression. The original

image has a grayscale resolution of 8 bits per pixel (bpp); Figure 1b shows it compressed to 0.08

bpp. This is not of su�cient quality for a physician to measure the e�ects of a treatment. Figure 1c

shows an example in which the compressed image has the circular tumor region at original quality,
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and it represents what one might wish to obtain from a regionally lossless scheme. This image is

suitable for comparison and still provides dramatically higher compression than can be achieved

by schemes which are lossless everywhere. This image could include a circle that makes clear the

boundary of the lossless region. In this example, the important region occupies only 4% of the

pixels in the image. After the entire image has been compressed by a factor of 100:1, the important

region would represent 80% of the total �le size if it were not compressed.

2 Background

In region-based coding, the input image is segmented, i.e., divided into spatial regions. A schematic

is shown in Figure 2. The regions may di�er in their grayscale characteristics or in their importance

levels. The division into regions can be useful for two very distinct purposes. Segmentation can

allow the use of encoding schemes tailored for the di�erent regions, and it can allow the assignment

of di�erent quality levels to the di�erent regions. In the �rst case, the di�erence between quality

levels Q1 and Q2 might be negligible, but the segmentation allows the pro�table use of di�erent

methods M1 and M2. In the second case, the methods might be identical except for their bit

allocations, and the goal is to produce di�erent quality levels. It is possible, of course, that the

segmentation might be useful for both purposes.

2.1 Regions with di�erent encoding methods

Most work in region-based coding has focused on the former goal { identifying regions with di�erent

grayscale characteristics which would pro�t from the use of di�erent encoding schemes. The earliest

work on region-based coding called itself \contour-texture" coding [25, 27]. Region-growing seg-
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mentation was followed by approximation of internal areas using 2-D smooth polynomial functions

of order 0, 1, or 2. The region-growing was based on gray-level intensity, and a post-processing

step merged small regions. In coding, the boundaries were represented by a combination of straight

lines, circular arcs, and pieces of original boundaries. Later variations on this theme included us-

ing split-and-merge segmentation [26], imposing smooth boundary constraints, allowing internal

behavior to be represented by either polynomial approximation or vector quantization [17, 11, 14]

and a variety of other ideas. Boundaries can be described in a variety of di�erent ways, including

chain codes, polygonal approximations, signatures, and boundary segments [18]. These boundary

representations can be losslessly encoded. There is an inherent trade-o� between the accuracy of

object segmentation and the overhead for coding the description of the segmentation. Segmentation

can be very useful for videophone coding, where it is possible to exploit extensive a priori knowledge

about the scene (e.g., existence of a face symmetry axis and relative approximate locations of the

primary facial features) (see, e.g., [29]).

Several region-based coders have been used in the context of multiresolution decompositions.

Baseri and Modestino applied methods of boundary description and parametric polynomial �tting

to the baseband of a subband decomposition [1]. In this way, the superior performance of subband

coding could be combined with the ability of polynomial functions to model low-frequency regions

of natural images. A division of subbands into edge regions (found separately in each subband),

texture regions (in common for all subbands), and low-activity regions was proposed in [28]. Good

results were obtained by extracting arbitrarily shaped regions in each band, and using di�erent

quantizers and di�erent bit allocations for each class of sub-region in each band.
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2.1.1 Regions for motion compensation

Region-based methods have been �nding particularly fruitful applications in the compression of

motion sequences (see, e.g., [51, 31, 15, 30, 33, 54, 32, 16, 4, 49, 10, 55, 19, 20, 43]). These methods

are often called \object-oriented" compression techniques, since a moving region is often a discrete

object. Object-oriented approaches are generally aimed at very low bit rate video coding. Typically,

object-oriented coding algorithms segment each image into regions of uniform motion and estimate

motion of these regions to generate more accurate motion compensated images. Compared with

block-based motion compensation, object-oriented motion compensation requires extra computation

to perform the segmentation, extra bits to encode the boundary information (which is often encoded

by a chain code), but fewer bits to encode the motion-compensated prediction error. Another

slightly di�erent approach is to use a simple block-based motion estimator, and then to use an

object-oriented approach to segmenting the motion-compensated di�erence frame. The di�erence

image can, for example, be segmented into regions of high and low activity, and the low activity

regions can be left unencoded.

2.2 Regions with di�erent quality levels

A smaller number of studies on region-based coding have focused on the second goal { providing

di�erent levels of quality in di�erent spatial regions of an image. In [40], aerial images were seg-

mented into non-homogeneous regions (e.g., roads, buildings) which were considered important,

and textured homogeneous regions (e.g., agricultural or undeveloped areas) which were less impor-

tant. The quality goals were to achieve \information preservation" for the important parts, and

\image realism" for the remainder. Texture modeling was performed in the wavelet domain within
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polygonal regions that were de�ned by their relatively homogeneous statistics in the image domain.

In the non-homogeneous regions, the subband data was adaptively scalar quantized. The quan-

tized coe�cients, texture parameters, and region geometries were then losslessly encoded. In this

example, both di�erent quality levels and di�erent encoding methods resulted from the segmenta-

tion. A similar goal appeared in [22], in which images were segmented and coded with polynomial

approximations. Such schemes can be very ine�cient for textured regions, since they tend to get

approximated with a large number of uniform regions. A pre-processing step was used to identify

textured regions and reduce the number of regions there. Cheng and Kuo used a JPEG-like scheme

in which di�erent quantization tables were used for di�erent regions [9]. In this work, the block

discrete cosine transform (DCT) was replaced with a fully decomposed wavelet transform. Coef-

�cients from di�erent bands were grouped into blocks, and JPEG-style quantization and entropy

coding were then applied. A user selects a rectangular region of interest, and blocks in this region

are subjected to a less coarse quantization. For a video application, the system tracks the position

of the region of interest. Bedini, et al, focus on videotelephone sequences in which the speaker's

head is detected using active snakes [2]. Internal facial features such as the eyes and the mouth are

subsequently detected and coded more accurately. Similar goals for videotelephone sequences are

discussed in [5].

2.2.1 Quality levels for medical images

Several studies have focused on di�erent region-based quality levels for medical applications [35,

36, 37, 53, 52, 34, 24, 6, 7]. The general theme is that diagnostically important regions must be

preserved at high quality, whereas the rest of the image is only important in a contextual sense,

helping the viewer to observe the position of the ROI within the original image. The proposed
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schemes di�er according to the segmentation methods (manual vs. automatic) and segmentation

goals (a background/foreground distinction or a more focused segmentation), and according to the

compression methods (DCT, vector quantization, wavelets, etc.) and compression goals (lossless

ROI vs. lossy ROI).

In [35], MR brain images were segmented, and di�erent segments were encoded with vector

quantizers at di�erent rates. In this work, region boundaries were not explicitly coded; the members

of this class of images were assumed to have su�cient spatial stationarity that the region locations

could be assumed to match the standard. The algorithm was not robust against the situation where

an individual scan had the brain portion signi�cantly displaced with respect to the average for the

class. In later work, this problem was �xed and yet encoding of region boundaries was still avoided

by basing the segmentation on the small, low resolution version of the image which was transmitted

�rst [36]. The lowest band (LL4) of a 4-level wavelet decomposition was automatically segmented

into 3 regions of di�ering diagnostic importance. Based on this segmentation, bits and quality were

allocated to the corresponding regions of the next subbands (LH4, HL4, HH4). These four encoded

and reconstructed bands could then undergo a single round of inverse transforming to produce a

new baseband (LL3). In its turn, this baseband could be segmented and bits could be assigned to

the other bands. With a recursive application of inverse transforming and segmenting, occurring

at both the encoder and decoder, the bit allocation could be tracked through all the bands. The

structure is shown in Figure 3. Another method that involved an automatic segmentation into 3

regions was [34], in which ventricular cineangiograms were compressed by forming di�erences within

each region, and approximating those residuals with smooth functions.

A region-based method using predictive pruned tree-structured vector quantization was reported

in [37]. Here, simple methods based on thresholding, connectivity, and boundary smoothing were
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used to segment CT chest scans into foreground and background. The boundary was encoded

with a chain code. The background was not encoded, and was displayed as black by the decoder.

The paper showed that the segmentation improved performance not only because no bits would be

wasted on the background, but also because a more accurate predictor could be designed by using

only the foreground regions of the training set. Another method focusing on foreground/background

segmentation was [53] which exploited the fact that a large proportion of a mammogram consists of

uninteresting background. A self-organizing neural network was �rst used to separate the breast area

from the background. Then an optimized JPEG coding algorithm was used to code the segmented

breast area only, at near lossless quality.

In [52], a ROI-DCT algorithm was proposed, in which an 8� 8 block DCT is performed on an

image, and more DCT coe�cients are retained for blocks inside the ROI, so that the ROI ends up

with high quality. While not precisely segmentation-based methods, in [6, 7], methods for adaptively

quantizing wavelet coe�cients were developed with an eye towards preserving strong edges. The

goal is to accurately preserve structures and boundaries which might be subjected to quantitative

measurements by a radiologist.

The studies described so far have been concerned with segmentation-based lossy coding of medi-

cal images, where the ROI gets higher, but not lossless, quality. A small number of previous studies

have also focused on segmentation-based lossless coding of medical images, in which all regions re-

tain lossless quality, but di�erent lossless encoding methods might be used for di�erent regions such

as background and foreground (see [45, 47]). One previous study focused on lossless-ROI coding for

medical images, in which the ROI is lossless but the remainder of the image sustains degradation

[24]. This study compared three di�erent methods: a DCT method, a DCT/HINT method and

a HINT method. The DCT-based method was found to be the best among the three in terms
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of compression ratio, algorithmic complexity, and quality of reconstructed image. First the entire

image was transformed, quantized and encoded using 8 � 8 block DCTs, a scalar quantizer and

Lempel-Ziv (LZ) coding. Then the image was reconstructed and a residual image was computed.

The residuals of the pixels inside the ROI region were coded using LZ coding. This method is close

to that described in [50], in which JPEG followed by adaptive prediction and adaptive arithmetic

coding of the residual were used to encode an image losslessly in its entirety. A lossless-ROI scheme

employing a version of pyramid coding (adapted MIP texture mapping) was described in [12] in the

context of gaze-contingent displays, but speci�c compression results were not included.

2.3 Multiresolution decompositions

The goal of our work is to develop and compare algorithms which deliver di�erent levels of recon-

struction quality in di�erent portions of the image, speci�cally where the region-of-interest R has

no loss (perfect reconstruction). We focused on multiresolution coding methods such as wavelet ze-

rotree coding [44] and the S-transform [39, 21, 38], since multiresolution methods are currently the

basis for the best general-purpose lossy and lossless compression of still images (e.g., [44, 42, 41, 13]).

The basic concept of wavelet zerotrees is as follows. A subband decomposition is produced by

an analysis �lter bank followed by downsampling. Any or all of the resulting subbands can be

further input to an analysis �lter bank and downsampling operation, for as many stages as desired.

In a two-channel separable system, the initial high-pass and low-pass �lters and downsampling are

applied to the rows of an image. The subsequent �lters and downsampling are then applied to

the resulting columns. The image is split into four bands, denoted LL1, LH1, HL1, and HH1,

according to whether the rows and columns received the low-frequency or high-frequency �ltering.
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The reconstruction operation consists of an upsampling operator followed by a synthesis �lter bank.

If only the low band LL1 is further decomposed, this is referred to as an octave-band decomposition.

In an octave-band decomposition, each coe�cient Xi (except those in the lowest band and the

three highest bands) is related to exactly four coe�cients in the next higher band. Those four

coe�cients correspond to the same orientation and spatial location as Xi does in the original image.

Each of these four is in turn related to four in the next band, and so on. These coe�cients are

collectively called the descendants ofXi. The relationship is depicted in Figure 4. In an octave-band

decomposition, it is often true of image data that when a coe�cient Xi has magnitude less than

some threshold T , all of its descendants will also. The collection of coe�cients is then called a

zerotree with respect to the threshold T , and the coe�cient Xi is called the zerotree root. Shapiro's

embedded zerotree wavelet (EZW) algorithm uses this zerotree structure to e�ciently \divide and

conquer" the coe�cients in an iterative SQ approach. The zerotree root is the wavelet equivalent of

the end of block (EOB) symbol in JPEG coding. That is, when a sequence of scanned coe�cients

ends with a tail of zeros, one simply cuts o� the tail with a special symbol. The zerotree grows

exponentially with the depth, while in JPEG, there is no such growth, thus making the zerotree

potentially more powerful.

A hierarchical subband decomposition must satisfy two conditions in order to allow lossless

compression. The �lter bank must have the property of perfect reconstruction. This is not the

case for standard QMF �lters, which are called near-perfect-reconstruction (near-PR) �lters [23].

Secondly, it must be possible to represent the subband coe�cients with a limited number of bits.

These considerations lead to a constrained choice of �lters. Egger and Kunt designed a lossless

zerotree scheme based on a morphological subband decomposition, in which the coe�cients of the

subbands are signed integers, requiring 9 bits for their representation [13]. Said and Pearlman
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designed a lossless zerotree scheme using what they called the S+P transform [42] a simple pyramid

multiresolution scheme (the S-transform) which was enhanced via predictive coding.

The S transform allows perfect reconstruction, and has been used for lossless medical image

compression [39, 21]. The one dimensional S-transform maps a sequence of integers c[n]; n =

0; : : : ; N � 1 into two sequences l[n] and h[n] of half the length:

l[n] = b(c[2n] + c[2n+ 1])=2c; n = 0; : : : ; N=2� 1

h[n] = c[2n]� c[2n+ 1]; n = 0; : : : ; N=2� 1

where b�c denotes downward truncation. The transform is similar to the wavelet Haar transform.

The two dimensional S-transform is performed by taking the one dimensional transform �rst on

the rows, and then on the columns. The variation of the S-transform presented in [42, 41], called

the S+P transform, uses prediction to further lower �rst order entropy and improve the overall

compression performance.

3 Methods

3.1 Segmentation

In this work, the regions of interest were selected by hand. For a real application, a number of

possible scenarios can be envisioned. It is very common for radiologists today, looking at hardcopy

diagnostic �lms, to make quick circles with a grease pencil around the things they �nd noteworthy

in the image. Often the written or dictated report of the radiologist makes reference to something

which was marked on the �lm. Radiologists cannot reasonably be asked to \Mark the region which

should get lossless compression." However, they could perhaps be encouraged to \circle something
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if it is important," especially if they were going to make some kind of mark anyway, as a reference

point for their report. So, at the time of primary interpretation of the �lm, location of the ROI

might be relatively easily obtainable. The information could then be used to compress it for long-

term storage. However, it is reasonable to assume that greatest clinical utility would come only

from a reliable automatic segmentation system. We may not be far o� from a time when computer

segmentation could locate a sensible region-of-interest in many images. The system would not have

to be correct all the time in order to be useful. We can imagine, for example, that radiologic

archiving systems might evolve into some kind of two-tiered structure. One tier will provide for

long-term image accessibility, in which all original images are available with some delay. The second

tier will have digital images available immediately, but only by employing heavy compression. Even

if the automatic segmentation system only targets the correct ROI 80% of the time, in this two-

tiered archive, lossless-ROI coding might be very useful. In 80% of cases the fast tier service would

rapidly and conveniently provide the diagnostician with the accurate and con�dent information of

the correctly-located lossless-ROI image. In the other 20% of cases, the original image could be

retrieved after some delay. In either situation, the initial interpretation would be performed on the

original image, and the coding would be used afterwards for long-term storage. So viewing of the

coded lossless-ROI image might only occur in the context of an already-diagnosed patient who is

being seen for later comparison. In this situation the radiologist could be assumed to know, upon

viewing the coded image, whether the displayed ROI was in the right place, or whether retrieval of

the original was called for. The validity of this assumption could be tested by simulating the use

of the ROI selection and encoding process in a clinical experiment.
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3.2 Encoding

There are two basic approaches to providing a lossless region-of-interest using a multiresolution

decomposition:

1. Use a decomposition that permits perfect reconstruction. Quantize the coe�cients for the

entire image, to attain the desired bit rate or quality constraint for the background region �R.

Then, re�ne the quantization to the point of perfect reconstruction only for coe�cients that

impact on region R.

2. Use a decomposition that does not necessarily permit perfect reconstruction. Quantize the

coe�cients for the entire image, to attain the desired bit rate or quality constraint for the

background region �R. At this point, let R̂ denote the lossy recontruction of R (see Figure 5).

We now have the option of computing and losslessly encoding the regional di�erence image.

This image contains zero values in the region �R, and contains the di�erence between R and R̂

in the region R. Alternatively, once the desired bit rate or quality constraint has been met for

the background region �R, we could continue for a while with re�ning the lossy representation

of the important region R, and then switch to lossless encoding of the regional di�erence

image. In other words, once R̂ is achieved, a lossless representation for R can be reached by

apportioning di�erent amounts of the work between the lossy algorithm used at the start and

the lossless algorithm to be used at the end.

There are two basic ways in which the regional di�erence image can be losslessly compressed:

� A pixel-domain lossless method, such as adaptive arithmetic coding or Lempel-Ziv cod-

ing, can be applied to the pixels inside the region R.
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� A transform-domain method might not be adaptable to the arbitrary shape of R, and

might have to include some or all of the (zero-valued) pixels outside. A variety of methods

have been recently introduced for transform coding of arbitrarily shaped regions (see, e.g.,

[8, 46, 3, 48]) but the focus has been mainly on lossy techniques.

In both cases, the decoder must either infer the location of the lossless region, or must be

explicitly told the boundaries of the region. If the decoder is explicitly told, those bits must be

included in the �nal rate. In our work, we ignore the issue of region description, assuming that the

lossless region will be composed of a small number of circles or rectangles that can be explicitly

described with a negligible number of bits. For example, for a rectangle, the encoder could transmit

the coordinates for one corner, and the height and width in pixels. For an image of size 512� 512,

this would entail at most 36 bits. Similarly, for a circle, one could transmit the coordinates of the

center, and the radius.

In the following, we present lossless ROI coding using each of the two basic approaches outlined

above. For the case where a lossy algorithm is used initially, necessitating a switch to a lossless

algorithm, we examine various possible divisions of e�ort between the coding stages.

3.3 The S-algorithm

The �rst approach is to decompose the image using a method which allows perfect reconstruction.

For this we chose the S-transform together with the zerotree-style successive re�nement of coe�cient

values. Let RTr denote all the coe�cients in the transform domain that will have an impact on R

after the inverse transform. The idea of the S-algorithm is to successively re�ne all coe�cients until

a certain bit budget B is exhausted. After this, only the coe�cients in RTr are re�ned, until they
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are losslessly described. Figure 6 shows a owchart of the algorithm.

While the lossless S+P transform of [42] outperforms the S-transform, the added element of

prediction makes each coe�cient dependent upon the previous one. An error in a coe�cient that

was outside RTr (for the S-transform) can now propagate to a coe�cient inside. Thus all coe�cients

in the decomposition must be lossless (which is not our goal) or else appropriate initial prediction

conditions must be supplied for the arbitrarily shaped region. When decompressing, all the coe�-

cients that a�ect R will be correct, and R will thus be losslessly recovered. A disadvantage of the

S-transform is that it introduces block artifacts in the lossy parts (see Figure 7), due to the short

support of the S \�lters".

3.4 The WA-algorithm

A second approach is to choose a �lter that does a better job of decorrelating pixels but that does

not provide perfect reconstruction, and then to make up the di�erence by lossless pixel-domain

coding. Coe�cients for the entire image are successively approximated until the desired target bit

rate is met. Then the coe�cients in RTr are further re�ned until all the (inverse transformed) pixels

in R di�er from the original image pixels by an amount less than d. Lastly, arithmetic coding is

performed in the pixel domain on the residual for the R region. By changing d, one adjusts the

workload between the wavelet zerotree encoder and the arithmetic encoder. We call this combined

wavelet and arithmetic algorithm the WA-algorithm. Its ow graph is shown in Figure 8.

The wavelet zerotree encoder will generally perform better with longer �lters to decorrelate the

pixels. Then the number of coe�cients a�ecting each pixel is greater, and thus RTr grows. The

fraction of the subband contained in RTr grows as we go to lower resolution subbands. We will
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thus have a good representation of the higher frequencies only in R and immediately outside, while

the lower frequencies will still be accurate a little further away from R. As shown in Figure 9, this

produces a graceful degradation in quality as we move away from R.

One might think that a bigger RTr must imply a waste of bits and therefore worse rate/distortion

performance. This need not be the case. If the encoding of R also improves the quality of the

background �R, we do not need so many bits to describe the background in the �rst place, and we

could terminate the �rst encoding step earlier. This would correspond to stealing bits from the

more remote parts of the background, at the expense of the nearer parts. The uneven distribution

of quality would not be properly reected in the average PSNR score of the background.

3.5 The WS+P algorithm

The third approach begins as the second one does, with a lossy embedded wavelet zerotree coder,

and then uses the lossless S+P transform to make up the di�erence as needed for R. The wavelet

zerotree method provides a lossy representation of the image. This is then subtracted from the

original to provide the regional di�erence image. As shown in Figure 5, the regional di�erence

image is set to zero everywhere outside R. Since the residual is to be encoded losslessly, modulo

256 arithmetic can be used, so that the residual image can be represented in 8 bits. A constant

value of 128 (modulo 256) is added to all coe�cients. This has the advantage of encoding residuals

of similar magnitudes with bytes of similar values. For instance, the residual sequence �1; 1;�1; 1

is encoded with 127; 129; 127; 129 instead of 255; 1; 255; 1 which would yield large high frequency

components in the transform. The residual is then transformed with the S+P transform. The

coe�cients are encoded with a zerotree successive approximation method. Since the image will be
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of constant intensity (128) outside R, the prediction quickly goes to zero. Thus the set of nonzero

coe�cients in the S+P transform domain is not much bigger than the set of RTr pixels gotten from

an S-transform. The smallest set RTr is found that completely covers the non-zero coe�cients. A

few bits are used to described this set to the decoder, and the set is used to discriminate among

the coe�cients when encoding the zerotrees. The algorithm is referred to as the WS+P algorithm,

and is described in the ow graph in Figure 10.

4 Experimental results

The three algorithms were implemented by modifying the publicly available C code used in [42, 41]

to incorporate the various distinct methods for handling the ROI. The algorithms were tested on a

variety of di�erent images: magnetic resonance (MR) brain scans, MR chest scans, computerized

tomographic (CT) chest scans, and mammograms. All images were 8-bit grayscale (the CT and

mammographic images had their amplitude values linearly rescaled down to the 8-bit dynamic

range). Image sizes ranged from 256 � 256 up to 1500 � 2000. In each case, a single square ROI

was selected. In the case of images displaying pathology, the ROI focused on a region of primary

diagnostic importance. In the case of normal images, the ROI was located near the center of

the image. Di�erent sizes of the ROI region were examined, ranging from only a few pixels on a

side up to approximately 60% of the total area of the image. The methods were compared with

di�erent �xed values of (average) background PSNR. In addition, the DCT/LZ method of [24] was

implemented for comparison. (Our implementation accomplished the LZ coding using UNIX gzip

version 1.2.4, which may not be identical to their algorithm, since the exact version of LZ coding was

not stated in [24]). We also implemented a Wavelet-LZ algorithm (W/LZ) similar to the DCT/LZ
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but with the wavelet algorithm from [41] instead of the DCT to provide the lossy image. For each

ROI size, the �le size in bytes was measured for all �ve algorithms.

The results for the various algorithms were dependent on the selected background PSNR and

the size of the ROI. For example, for an average background PSNR of 40 dB, results are shown

for various ROI sizes in Figure 11 for a 512 � 512 CT scan. Note that the WA-algorithm (dotted

line) performs well for small ROI sizes. When the ROI is small, the spillover of quality from the

ROI is small and the good decorrelation e�ect of the WA algorithm pays o�. For large ROI sizes,

it becomes less competitive. The DCT/LZ algorithm (denoted by + symbols) does poorly for all

ROI sizes. The S-algorithm (solid line) is not very e�cient for small regions but for very large

regions it does well. The W/LZ algorithm (dashed line) is the best for the smallest ROIs, but

loses to the WS+P algorithm (crosses) for sidelengths bigger than approximately 30 pixels. The

WS+P method performs well throughout the range of sizes. These trends were similar for other

images tested, although the exact crossing points varied. For example, for a 512 � 512 section of

a mammogram, the W/LZ algorithm was competitive with the WS+P algorithm up to a ROI side

length of about 80 pixels, and the WS+P algorithm was superior for larger ROIs.

The WA-algorithm includes an additional adjustable parameter d. After the entire set of co-

e�cients has been described to some desired (low) bit rate, there remains the re�nement of the

ROI to lossless accuracy. The adjustable parameter controls the allocation of this re�nement work

between the lossy zerotree coder and the lossless arithmetic coder. A range of possibilities is shown

in Figure 12. In this example, the wavelet zerotree coder uses 0.013 bpp initially to produce a

constant PSNR of 36 dB for the entire test image (a section of a mammogram). The WA-algorithm

can use a variable number of extra zerotree bits for R, so that the maximum absolute error in the

ROI is less than d. The x-axis shows the maximum absolute error for the pixels in the ROI at
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the point when the coder switches from the wavelet-zerotree description to the arithmetic coder in

the pixel domain. The dotted line is the number of extra kbytes used for describing the wavelet

coe�cients of region R. The dashed line represents the output from the arithmetic coding of the

residual. The dot-dashed line is the total number of kbytes to describe the entire image (the two

�rst lines + the constant amount used initially by the wavelet zerotree coder). So, in this case, the

overall performance improves as the encoder shifts more work to the arithmetic coder.

This is not always the case. In Figure 13, the role of the arithmetic coder is examined at di�erent

background PSNRs for a CT scan. For all 4 curves, the ROI was of �xed size 200�200 pixels. Each

curve represents a di�erent background PSNR value (which is also the initial PSNR of the ROI):

28 dB (solid), 32 dB (dotted), 36 dB (dashed) and 40 dB (dash-dot). The y-axis shows �le size in

kbytes, and the x-axis shows maximum absolute error in the ROI at the point where the arithmetic

coder takes over from the zerotree coder. High values of background PSNR make it pro�table to

let the arithmetic coder do as much work as possible. That is, the ROI is initially encoded by the

zerotree encoder to the same high PSNR as the background gets, and all further re�nement of the

ROI should be done by the arithmetic encoder. For lower values of background PSNR, however,

continuing the re�nement of the ROI in the wavelet domain past that background PSNR level is a

useful way to expend bits up to a point, and we get a minimum on the curve.

Di�erent shapes for the ROI region were also tried briey. As expected, the WS+P algorithm

gives best performance on square ROIs. Other shapes penalize the performance but do not a�ect

the trend; when comparing the WS+P algorithm to the WLZ algorithm, for instance, the WS+P

algorithm was still superior if the ROI area was increased su�ciently. For example, a square with a

side length of 60 pixels was enough for the WS+P algorithm to be superior to the other algorithm.

A circular ROI had to have the same area as an 80 pixel wide square in order for the WS+P
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algorithm to be superior. Less compact shapes were also tried, with similar results.

Pictorial examples of the results are given in Figure 14. Figure 14(a) shows an original CT chest

scan, of size 512� 512, rescaled to 8 bpp grayscale. The white outline of a square ROI is displayed

superimposed on the image. Figure 14(b) shows the image compressed to 3953 bytes (0.12 bpp)

using the lossy wavelet zerotree method [41] without consideration of the ROI region. Figure 14(c)

shows the image compressed to 3953 bytes using the WS+P algorithm to ensure a lossless ROI. The

bits required to make the ROI lossless have required a considerable degradation in the rest of the

image. Figure 14(d) and (e) are zooms of Figures 14(b) and (c), respectively, showing how the ROI

compares for the lossy and lossless cases. For a situation where the radiologist intended to make a

detailed measurement of a feature in this area, or a quantitative comparison to another scan, the

lossless ROI would be preferable. Of course, with an additional expenditure of bits, one can have

both lossless quality in the ROI and high quality in the remainder of the image (see Figure 14(f),

at 0.22 bpp).

5 Conclusions

There are quite a few applications in which one would like certain portions of an image to be

encoded with higher quality than other portions (e.g., videotelephone sequences where one would

like better quality for the face, aerial or satellite images in which some portions are useless due to

cloud obscuration, or are less important because they depict uninhabited territory, etc.) Medical

images and some scienti�c images are among the few where people argue that higher quality should

actually mean lossless quality. (Indeed, many physicians and scientists have argued that medical

and scienti�c images must always be compressed losslessly everywhere.) However, we propose
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that regionally lossless compression methods have the potential for widespread medical acceptance,

since they are responsive to the nature of medical images (spatially varying importance levels and

statistical characteristics) and to the needs of the radiologist (guaranteed accuracy for diagnostically

important regions, no ambiguity about what portions are reliable).

In this paper, we have investigated several possible methods for providing lossless-ROI coding.

With the goal of truly lossless coding of a region, quite di�erent techniques are needed compared

with the goal of providing higher (but still lossy) quality. Powerful methods for lossy coding may

perhaps be applicable only in conjunction with a lossless coder for the regional residual image. We

found that the results depended on several factors, including the size and shape of the ROI, and

the desired background PSNR. For almost all background PSNRs and larger ROI sizes of interest,

a wavelet zerotree coder followed by lossless encoding of the residual with an S+P transform (the

WS+P method) gave the best results. For very small ROIs or very high values of background PSNR,

simpler methods using wavelet zerotree coding followed by arithmetic or Lempel-Ziv coding became

competitive with the wavelet/S+P method. For these simpler methods, the optimal division of the

encoding work between the initial wavelet coder and the �nal entropy coder was found to depend

on the background PSNR chosen. These results makes sense. For very small ROIs or for very high

values of background PSNR (which is the initial PSNR of the ROI) the residual ROI has very little

structure remaining for the S+P transform to exploit. In these situations, simple entropy coding of

the residual is a good solution.

Quality evaluation for this type of coding is challenging. While methods can be compared

with a �xed (average) background PSNR, methods that provide di�erent quality gradations in the

background are not strictly comparable. Diagnostic accuracy simulation studies can be undertaken

to determine whether images archived with lossless-ROI coding are as useful as archived original
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images when a patient returns to a hospital for a new imaging study, and a diagnostic comparison

with the earlier archived image is required. It would also be of interest to see what percentage of

the time the chosen ROI corresponds to what the later interpreting radiologist needs to look at

during the comparison. There will of course be cases when the ROI does not correspond to what

the radiologist needs for comparison, for either manually selected or automatically segmented ROIs.

Continuations of this project might include comparisons of methods for multiple ROI regions,

clinical simulations of the encoding methods in a radiological archiving system, and encoding ROI

regions of arbitrary shapes. For arbitrary shapes, the actual ROI boundary description may become

signi�cant in the total bit count. The requirement for lossless coding in the ROI will have to be

factored in to the rate/distortion trade-o� between the accuracy of the boundary description and

the overhead required for it.
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Figure 1: MR brain scan with tumors circled (a), MR brain scan compressed by a factor of 100:1

(b), compressed scan with circled region shown at original accuracy (c).
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Figure 7: Block artifacts of the S-transform.
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Figure 9: The quality from the ROI region (left) spreads out to the surrounding pixels (right). A

background PSNR as low as 20 dB is used in this example to clearly show the e�ect.
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Figure 10: Flow graph of the WSP-algorithm.
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Figure 11: Comparison of all methods for a CT scan: DCT/LZ (+), S-algorithm (solid), WA-

algorithm (dots), W/LZ (dashes), WS+P algorithm (x).
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Figure 12: File size in kbytes vs. maximum absolute error remaining in the ROI for arithmetic

encoding. Dotted line: bytes used by the wavelet zerotree coder. Dashed line: bytes used by the

arithmetic coder. Dot-dash line: total number of bytes.
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Figure 13: File size in kbytes vs. maximum absolute error remaining in the ROI for arithmetic

encoding. The ROI size is �xed. The background PSNR is varied: 28 dB (solid), 32 dB (dotted),

36 dB (dashed) and 40 dB (dash-dot).
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Figure 14: Top row from left: (a) Original image with circled ROI, (b) Lossy image, size 3953 bytes,

(c) Lossless inside ROI, 3953 bytes, Bottom row from left: (d) Zoom on lossy ROI, (e) Zoom on

original ROI, (f) Lossless inside ROI, 7189 bytes.
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