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Abstract

New Wave is a hardware implementation of real time digital video decompres-

sion. The algorithm used is a wavelet transform coding which is a lossy algo-

rithm that achieves very high compression factors with low degradation of the

video image. The New Wave chip is capable of decompressing 25 video frames

per second. Each frame consists of 512� 512 pixels in 256 shades of gray. The

solution could easily be generalized to colour images.
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1 Introduction

It is a well known fact that computer images are very bulky - they require lots

of memory when stored and much bandwidth when transmitted. With digital

video this problem becomes even more appearent. The solution to this is to

compress the image before transmission and decompress it afterwards. This can

be done in two ways, using either lossless or lossy coding.

Lossless coding

Lossless coding reconstructs the compressed data excactly, with every single

byte correct. It is applicable on every type of data: text information, code as

well as computer images. The drawback is that the compression factor 1, which

depends on the amount of redundancy in the data, is rather low, seldom more

than 2 to 3.

Lossy coding

Lossy coding means that some information is lost during the encoding. The

decompressed data is not an excact copy of the original, but pretty close. The

introduced errors makes it easier to compress the data. For example, the se-

quence 255, 1, 0, 0, 2 ,0 ,0, 0, 1, 0, 0 1 could be exchanged with 255, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0 which is much easier to compress. Of course this could not be

done if the data represents executable code or text information, but if it is part

of an image, the di�erence may not even be visible to the human eye.

Much work has already been done in the area of lossy coding. For a thor-

ough understanding of the advantages with New Wave, we have to get deep into

existing standards and investigate their drawbacks.

1.1 The MPEG standard

One decompression algorithm that is being used more and more frequentely

is the MPEG algorithm, which is a standard for lossy compression of moving

pictures2. In its simplest form, an MPEG sequence is just a couple of JPEG3

images stored together in a �le. Smart MPEG encoders are able to use features

like di�erential coding, i.e. storing only the di�erence from the previous frame.

This tends to reduce the amount of data with a factor of three. We will, however,

only consider the simpler MPEG �les which contains JPEG-frames only. This

will make it easier to compare the formats, as we can look at still frames (JPEG-

images) rather than moving sequences.

1.1.1 The JPEG algorithm

For simplicity, forget about colors and suppose that the images are greyscale

only. In the JPEG standard the image is subdivided into blocks of 8� 8 pixels.

A discrete cosine transform is applied on each block. The result is a 8�8 matrix

with frequency coe�cients. (An inverse cosine transform of this matrix would

bring back the 8�8 pixel block.) The high frequency coe�cients will be situated

in the lower right part of the matrix, and the lower frequency coe�cients in the

top left. The JPEG standard takes advantage of the fact that the human eye

is less sensitive to higher frequency components of the image. Therefore, the

plan is to encode the lower frequency more accurately than the higher ones.

This is done by dividing the matrix with a quantisation matrix where the lower

right part has higher numbers than the upper left. This will bring many of the

1compression factor = original size
compressed size

2The ISO/IEC 11172-2.
3JPEG is a standard for lossy compression of static images
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high frequency coe�cients to zero or almost zero. To e�ciently code this the

coe�cients are coded with symbols of variable length, where each symbol stands

for a number of zeroes followed by the �rst non-zero coe�cient. Symbols that

are more frequent are coded with a shorter number of bits according to a table.

The JPEG standard contains a standard table but custom tables can be used.

MPEG data is always coded using a standard table, i.e. custom tables are not

allowed.

1.1.2 Disadvantages of the JPEG/MPEG algorithm

The JPEG and MPEG algorithm share two main disadvantages. The �rst is the

limitation to 8� 8 pixel blocks. At high or even at moderate compression levels

they become visible. The second disadvantage is that JPEG/MPEG images

often makes the impression of being blurry. This is an e�ect of the strong

surpression of high frequency components - the algorithm acts like a low-pass

�lter on the image, which reminds of the e�ect of wearing a pair of dimmed

glasses.

2 The Wavelet algorithm

Why is wavelet coding so e�cient? Here we will try to give you a mathematical

as well as an intuitive answer to that question. To make things easier for us,

we �rst consider one dimensional functions (such as sound) and move on later

to two dimensional functions (such as images).

If you are not interested in why wavelets are so e�cient but want to know

how it is done anyway, you can go directly to the subsection called \The two

dimensional wavelet transform".

Wavelet coding belongs to the family of transform coding algorithms. The

very idea with transform coding is that the values of the transformed function

are more gathered { not so smeared out { as the original function. If you look

at �gure 1, the transformed function is zero almost everywhere except for some

f(t)

t

ck

k

transform

(a) (b)

Figure 1: The dream transform.

short intervals. If you apply run length coding4 on the transformed image, the

resulting amount of data would be very small. The trick is therefore to �nd a

transform that brings most of the values in the transformed function (i.e. the

coe�cients) to zero. To do a transform you �nd a number of basis functions,

4In run length coding you simply replace consecutive zeroes with the number of zeroes.

See Appendix B.2
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'k(t) and you then describe your function f(t) with a summation

f(t) =

1X
k=0

ck'k(t): (1)

No we hope that the coe�cients ck will be more like �gure 1b than f(t) and

hence contain large segments of zeroes.

Take for example the cosine transform. Here the basis functions are 'k(t) =

cos(�kt). We transform the function:

f(t) =

�
0; t � 1

2

1; t > 1
2

(2)

With some calculations, we get ck = 1
2

sin(� k
2
)

� k

2

The result can be found in �g-

ure 3 where both the originalfunction f(t) and the resulting coe�cients ck are

showed.
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Figure 2: The original function f(t).
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Figure 3: The cosine transform of f(t).

We now start investigating various bases 'k(t). Is for example the cosine trans-

form a good one? Well, it has one disadvantage, and that is that the jump

of f(t) in t = 1
2
in the example inuences all of the coe�cients ck. It would

have been much better if it had only inuenced a limited number of ck, say all

ck that have k in some interval [a,b]. Then all ck for which k not belonged to

[a,b] would have been zero with a good compression as a result. This feature

is called time locality and means that the behaviour of the function f(t) for a

speci�c time t0 (for example t0 = 1
2
) does only inuence a limited number of

the coe�cients ck in the transform.
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Figure 4: Constant function f(t) = 1.
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Figure 5: After cosine transform.

A good transform should therefore have time locality. However, to get as many

zeroes as possible among the transformed coe�ceints ck we also want the trans-

form to have good frequency behaviour. Imagine a constant function f(t) = 1 as
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showed in �gure 4. If we use the cosine transform (which has not only good, but

optimal frequency behaviour) on f(t) the result will be c0 = 1 and all ck 6=0 = 0

(see �g 5). This feature is called frequency locality and means that behaviour

at a speci�c frequency f0 in the frequency spectrum of f(t) only inuences a

limited number of the coe�cients ck.

The optimal transform should have both time and frequency locality in order

to bring as many as possible of the coe�cients ck to zero. However, this means

that both our basis functions 'k(t) and their frequency spectra must be zero

outside a �nite region5. Such functions does not exist, as Heisenbergs relation

of incertainty shows that the variance of a function times the variance of its

frequency spectrum always exceeds or equals 1
2
. (In our case both the variances

are zero).

What basis functions are we then to choose? JPEG chooses the cosine trans-

form which has optimal frequency locality but no time locality whatsoever.

Approximately 15 years ago6, functions were found that had time locality but

yet reasonable frequency behaviour, and at the same time were possible to use

as basis functions. These were called wavelet functions. We are now going to

look at a basis of wavelet functions. They can look like shown in �gure 6:
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Figure 6: A wavelet base. Note that 'k(t) is written as phik(t).

Note here that the 'k(t) have more detail with increasing k. This means that

they contain higher frequencies and this is an indication of the good frequency

behaviour of the base. It is also easy to see that the higher k, the more local is

'k(t) in time (the smaller is the nonzero part of 'k(t)). In �gure 7 a function

f(t) is transformed using a base similar to this base7.

We have seen that wavelets combine good frequency beaviour with time lo-

cality, but it does not end there. As we soon will be able to see, we do not need

k di�erent basis-functions to perform the wavelet transform. We just need the

two wavelets in �gure 8 - one that has lowpass and another with highpass char-

acteristics. By doing repeated transformations with translated versions of these

two wavelets, we can get the same endresult as if we had used the basis in �gure

6 once. The �rst transformation uses translated versions of the lowpass wavelet

for the �rst k
2
basisfunctions, and the last k

2
basis functions are translated ver-

sions of the highpass wavelet as in rightmost part of �gure 6. In �gure 9 we can

5We leave this statement unproven
6A brand new discovery, at least in the mathematical perspective of time.
7The only di�erence is that the base used includes a larger number of basis functions than

would be proporiate to depict here
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Figure 7: A function f(t) is transformed using a base similar to the one in the

previous �ugre.
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Figure 8: The whole wavelet transform could be done using only these two

wavelets as basis functions.

see the impact of this �rst transfomation of our function f(t) from �gure 7a.

Notice that the �rst half of the result ressembles the original f(t) very much,

but it is half as wide. In the next step in the iteration, we only transform this

�rst half. The second half of the coe�cients are left untouched. Once again the

�rst half of the basis functions are lowpass wavelets, and the other half is made

from the highpass wavelet. The result will now look like �gure 10. After a third

iteration we have the same result as in �g 7b. This iterated form of the wavelet

transform is very good for computer implementations. We need not spend all

that memory to store the basis functions, as there are only two of them now.

When it comes to hardware implementation, the gain is even bigger; we have a

limited number of �lter coe�cients and can custiomize the multipliers for them.
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Figure 9: After one iteration.
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Figure 10: After two iterations.
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2.1 The two dimensional wavelet transform

Until now we have only considered one dimensional functions. A grey scale

image is best repesented as a two dimensional function I(x; y) where I is the

intensity in the point (x; y). This means that we need a two dimensional wavelet

transform. However, a two dimensional transform can be obtained by taking the

one-dimensional transform �rst along the x-axis and then along the y-axis. If

we use the iterated wavelet transform described above, it can look like in �gure

12.

Figure 11: Original image. Figure 12: Transformed along x-axis.

The original image (�gure 11) is transformed along the x-axis, and we notice

that the left part of the transformed image (�gure 12) ressembles the original

but is narrower. The rightmost part is a highpass version of the original which

means that vertical edges in the image are ampli�ed. After this comes the

transform along the y-axis (�gure 13).

Figure 13: Transformed along both

axis.

Figure 14: Transform repeated �ve

times.

We now get one quarter with lowpass information (the upper left), and

three quarters with highpass information. The lowpass part still resembles the

original image, but the other three contain lots of white area, which means zero
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coe�cients8. As we can see, large parts of the image contains zero or near zero

coe�cients. To bring even more coe�cients to zero, we redo the transformation

on the lowpass part. After �ve iterations, the result looks like in �gure 14. The

lowpass area is now so small that it is not neccesary to do another iteration.

2.2 The encoding

To compress the image, we save the lowpass data as it is and does a run-length

encoding of the rest. Before entering the run-length encoding phase, we need

to bring all the near zero coe�cients to exactly zero. Otherwise the run-length

encoding will not be very successful. By dividing the coe�cients with some

number, all the near zero coe�cents turn into true zeroes, and the run length

encoding can start. Each coe�cient is translated into a symbol whose msb9

describes what type of symbol it is. If the bit is 0, the rest of the bits in the

symbol describes the coe�cient value. If the bit is 1, the rest of the bits describes

the number of zeroes before the next coe�cient. To encode these symbols as

good as possible, Hu�man encoding is used. To introduce as few new symbols

as possible, a zero symbol (msb=1) contains not the number of zeroes but the

log2 of the number of zeroes. This means that to code for example �ve zeroes,

you need two run-length symbols with msb=1: One with value 2 and the other

with value 0, meaning a run of 22+20 = 5 zeroes. These symbols can be reused,

next time you want a run length of four zeroes you just need the one with value

2. After the Hu�man encoding you get the small Hu�man code. This is saved

to a �le together with the Hu�man lookup table and the lowpass data.

2.3 Reconstruction

To reconstruct an image the whole procedure is made backwards: First the

Hu�man code is decoded with help of the Hu�man lookup-table. Then the

runlength symbols are decoded to get the transformed image (�gure 14). A

multiplication with the division constant from above. The wavelet coe�cients

will not be the same as before the division and multiplication, and this is what

makes the wavelet algorithm lossy. However, as the wavelet transform is en-

ergy preserving10, we know that the changes in the reconstructed image will

not be larger than the changes in the wavelet coe�cients. The inverse wavelet

transformed is then performed. If we choose our wavelets right, we can use the

same two �lters from the transform to do the inverse transform as well! Even

though this may seem fantastic, this is not always the best choice. It is often

more important to be able to reconstruct an image fast than to encode it fast.

Examples of such applications are video on CD-ROM, video on demand etc.

A fast reconstruction is then needed. Shorter wavelets means fewer multiplica-

tions and additions and faster reconstruction. We shall therfore see to that the

reconstructions �lters are as short as possible. In [Adelson90] Adelson and Si-

moncelli showed that it was possible to use reconstruction �lters with a length

of three containting only the numbers 1 and 2, which means only shifts and

adds. This makes things much easier and faster to implement both in software

and in hardware. The two small �lters are depicted in �gure 8. The penalty is

that the construction �lters must be of in�nite length! However, Adelson and

Simoncelli also found that a truncated �lter with a length of 15 was satisfactory

for all practical matters.

8A white pixel means a coe�cient value of zero. The more the coe�cient value di�ers from

zero, the darker is the pixel.
9msb = most signi�cant bit

10We leave this statement unproven
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3 A Wavelet vs JPEG comparison

Presented in this section is a performance comparison between JPEG andWavelet

compression. Two measures of compression performance are used - compression

ratio and peak signal-to-noise ratio (PNSR). Even though you consider some

images better than others, these ratios are used as objective measures (in cases

where it is hard for the human to determine image quality). Assuming P bits

in the original image and C bits in the compressed image, the de�nition of of

compression ratio R is

R =
P

C
:

The test image is a greyscale imagewith 8 bits per pixel. According to [Hilton91],

the peak signal-to-noise ratio (PNSR), in decibels (dB) is computed as

PNSR = 20 log10
255

RMSE

where

RMSE =

vuut 1

NM

NX
i=1

MX
j=1

(f(i; j) � f̂ (i; j))2:

Here, N is the width and M the height of the image. The pixel value at position

(i; j) of the original image is denoted f(i; j) and the decompressed image f̂ (i; j).

Figure 15 shows the original image used throughout this comparison. In �g-

ure 17 and �gure 18, wavelet respectively JPEG compressed images are shown.

R is about 34 for both images and if scrutinized, small 8�8 squares can be found

in the JPEG image. A PNSR comparison shows that the Wavelet compressed

image is better.

Figure 15: The original test image. File

length 262159 bytes.

Figure 16: Image saved with 1 byte per

8� 8. File File length 4096 bytes.

The next pair of images, �gure 19 and 20, shows the two compression meth-

ods with R � 62. Here the JPEG method su�ers greatly from the "square-

e�ect", while the �rst still has got quite good quality. It is intresting to com-

pare these two images with the image in �gure 16, since all three use about 4k

bytes of storage. The image in �gure 16 is the original image with resolution
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decreased to 64�64. The quality of the JPEG image is slightly better than this

image and the wavelet image really outperforms JPEG here.

Figure 17: Wavelet decompressed pic-

ture. Compression ratio 34.7. File

length 7754 bytes.

Figure 18: JPEG decompressed pic-

ture. Compression ratio 33.7. File

length 7788 bytes.

Since JPEG has got a, not neglectable, overhead for each 8 � 8 square a

maximum compression ratio for every picture can easily be found. The result is

shown in �gure 22, with R � 72. This phenomenon does not occur for wavelet

compression until much later and in �gure 21 an image with R � 120 is shown.

Figure 19: Wavelet decompressed pic-

ture. Compression ratio 63.7. File

length 4114 bytes.

Figure 20: JPEG decompressed pic-

ture. Compression ratio 60.5. File

length 4334 bytes.

In �gure 23 and 24 wavelet decompressed images with R = 211:4 and

R = 303:8 are shown. The last image has got a compression ratio of more

than four times greater than the JPEG image in 22, and still the quality of

the wavelet decompressed image outperforms JPEG. Notice that the wavelet

method even conserves the highlights pretty well in these last images.

In [Strom94] a more thoroughly comparison is presented (using the famous
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Figure 21: Wavelet decompressed pic-

ture. Compression ratio 119.8. File

length 2189 bytes.

Figure 22: JPEG decompressed pic-

ture. Max acheivable compression ratio

71.9. File length 3645 bytes.

Figure 23: Wavelet decompressed pic-

ture. Compression ratio 211.4. File

length 1240 bytes.

Figure 24: Wavelet decompressed pic-

ture. Compression ratio 303.8. File

length 863 bytes.

Lena image) and similar results were obtained.

This comparison shows that it is meaningful to use wavelet compression, and

that a hardware implementation of wavelet decompression would be very useful.

4 Implementation

When developing a hardware construction, several system models are often cre-

ated along towards the �nal product. The �rst model is usually a program

written in a high-level language. The compressing and uncompressing programs

were based on EPIC and UNEPIC developed at MIT by Eero P. Simoncelli and

Edward H. Adelson. The next step was to develop a clock cycle true model

using BBDS (see A.1 for a description of BBDS).

Most of the important trade-o�s were made in the �rst software model and
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these are described in section 4.1. The more detailed construction decisions for

the hardware solution are described in section 4.2.

4.1 Software

To be able to implement the decompression algorithm in hardware, the EPIC

and UNEPIC programs had to be partially rewritten. The decompression pro-

gram, UNEPIC �rst reads the image header of the decompressed �le, stores

several constants and the Hu�man table, then it Hu�man decodes and run-

length decodes the data following the header. After scaling the decompressed

data, the program performs the inverse wavelet transform and then each pixel

value is divided with a constant. In this way, the reconstruction of the image is

produced.

The goal was to eliminate all oating-point operations and divisions, minimize

the number of bits in the integer operations, restrict the amount of on-chip

memory, remove all redundant information due to the restriction of 512 � 512

images and eliminate all recursion. All rewritings of the programs are discussed

below.

4.1.1 Recursion

EPIC saves the Hu�man tree recursively in the image header and this means

that a stack would have to be implemented in hardware. This is unnecessary

complicated and in order to eliminate recursion, a new structure, called a Hu�-

man table, was developed to reduce complexity.

Each entry in the Hu�man table consists of one bit, called the mode bit, plus

a word11. If the bit is set to one then that word is a symbol value, that is, the

entry is an external node. If the mode bit is zero, then that entry is an internal

node. The high order byte of that entry is the entry address of the left child

and the low order byte is the entry address of the right child. By using this

data structure the Hu�man tree could be saved without recursion. The only

drawback is that a 16 bit entry restricts the number of entries to 256, which

means that the Hu�man tree may consist of at most 128 external nodes. For a

compression ratio greater than 25, 256 entries su�ced for our test images.

The compression program was rewritten to save a Hu�man table in the follow-

ing way; �rst one byte indicating the number of words, say n, containg mode

bits, is saved, followed by one byte, say m, indicating the number of Hu�man

entries. Then follows n words of mode bits and m words of Hu�man entries.

4.1.2 Arithmetics

To reduce the area of the chip and to maximize the clock frequency, the num-

ber of bits in the integer operations in the inverse wavelet transform had to

be minimized. Originally, these were 32 bits operations. Without causing any

image quality degradation, it was concluded, via software veri�cation, that 16

bits operations su�ced.

The only oating-point operation in the original program was the division per-

formed when scaling the image after the inverse wavelet transform. Both the

oating-point operation and the division should be eliminated. By replacing

11A word is here 16 bits.
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it with a integer shift right operation, the image quality deteriorated approxi-

mately 0:6 dB. Several tests showed that the human perception system could

not distinguish which of the images was compressed with the original program.

The shift operator restricts the compressing program only to use scale factors

of type 2n.

4.1.3 Image header

Since the chip only decompresses 512� 512 grey scale images, redundant data

in the image header could be removed. The image header in the rewritten pro-

grams are described here.

The �rst word contains the original EPIC identi�cation tag ($ff) and the num-

ber of levels in the inverse transform, which in this case forms $ff05. The width

and the height of the image were removed, since they both are implicitly 512.

Then follows a word containing the scale factor used after the inverse wavelet

transform and a word containing the scale factor used after runlength decoding.

Originally, a scalefactor was saved for each square in in the transformed image,

but since they only di�ered by a factor 2n this information was removed and

only one word was saved. After that follows 256 words of raw data for the low-

pass component of the transformed image. Finally, the Hu�man table is read

and then the compressed data remains.

4.2 Hardware

The hardware implementation is divided into two parts, namely Hu�man and

runlength decoding and the wavelet transform. These two parts are described in

detail below.

4.2.1 Hu�man and runlength decoding

The main task of this part of the chip is to Hu�man and runlength decode, but

it also reads and stores parts of the image header. A schematic view of the two-

phase hardware implementation is depicted in �gure 25. Since the image header,

the raw data (low pass) and Hu�man table occurs �rst in the �le, these things

have to be taken care of �rst. The compressed image data is read from the mem-

ory, called Compressed Picture Memory, to the left in the �gure. Located above

this, is a Picture Counter (PC), which holds the address of the current word to

be read from the memory. Below is a box called Address Logic which computes

a number of control signals, which in turn controls the action of the other boxes.

The control signals computed depend on the value of the PC and some con-

stants read from the memory into the Constants box.

They are used to determine when to save constants in latches, when to save

the Hu�man table, when to write the raw data (low pass) to the Destination

Memory and when to start Hu�man and runlength decode.

After two image constants have been stored in latches, the Hu�man table is

stored. In order to make the Hu�man table work correctly, the �rst entry is

stored on address zero and the following entries on the sequential addresses.

When the Hu�man table has been stored, only image data remains to be Hu�-

man and runlength decoded. Since it usually takes several clock cycles to Hu�-
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Figure 25: Hu�man decoding and runlength decoding.

man decode a symbol, the PC cannot be incremented every clock cycle as before.

The problem is solved in the following way. The box called Control Logic and

counter contains a modulo-16 counter to hold the current bit in the word begin

decoded. When this counter reach 15 a control signal is generated, saying that

the PC should be incremented.

The box called Hu�man Decode takes care of all Hu�man decoding. A control

signal, generated by Address Logic, resets this box and the Hu�man decoding

of the �rst symbol starts.

The Control Logic and counter determines which bit of the word from the mem-

ory is to be decoded. If this bit is set, the right child is used as the next entry

address and if it is zero, the left child is used. The entry address is feed back

into the Hu�man table and a new entry is being fetched. This feedback loop

continues until the mode bit is set. Then the output from the Hu�man table

contains the decoded symbol, which is then feed into the RunLength Decode

box. If the MSB12 is set, then a runlength symbol has been encountered and

all other boxes are being paused. The number of zeros to be written to the

destination memory is computed and when these zeros have been written, the

paused units start computing again. On the other hand, if the MSB is zero,

then an ordinary symbol has been encountered. The SMSB13 determines the

sign of the remaining 14 bits.

Before writing to destination memory the symbol also has to be scaled. The

Scaling box contains the only multiplier in the construction and depending on

the destination address the multiplicand is shifted various steps to the left (see

appendix D for VHDL-details).

12MSB stands for Most Signi�cant Bit.
13Second Most Signi�cant Bit
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The Write Logic box contains a counter that holds the destination address and

this counter is only incremented when the box RunLength Decode has a new

symbol to be saved.

A real two-phase implementation is shown in appendix C.

4.2.2 Wavelet transform

To understand how to decode a wavelet coded picture, we only have to consider

the last step - the other steps are done the same way. The left part of �gure

26 consists of four di�erent kinds of coe�cients: lowpass coe�cients in part L,

vertical hightpass in part V, horisontal highpass in part H and diagonal highpass

in part D. Every one of these parts contains information for the whole picture.

The lowpass coe�cients give the basis and the highpass parts add detail to the

L V

H D

final image

Figure 26: The last iteration in the reconstruction phase.

picture. However, a single coe�cient does only a�ect a small part of the picture,

thanks to the time locality of the wavelet transform. In our case with threetap

�lters, every coe�cient a�ects a three times three square. Squares a�ected by

consecutive coe�cients overlap as seen in �gure 27. The di�erent kinds of co-

coefficient 2

coefficient 1

pixels affected by

coefficient 2

pixels affected by

coefficient 1

Coefficient data Reconstructed image

Figure 27: This is the relationship between areas a�ected by consecutive coef-

�cients.

e�cients (L, H, V and D) does not a�ect the resulting image in the same way.

This is for two reasons:

A) Coe�cients of di�erent type does not a�ect the same square. For example,

the �rst L coe�cient does not a�ect the same square as the �rst D coe�cients.

The relationship between the two squares are shown in �gure 28.

B) The di�erent kinds of coe�cients (L, H, V and D) does not a�ect its square

the same way, but according to the following matrices.

L =
1

4

0
@ 1 2 1

2 4 2

1 2 1

1
A
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area affected by

first D-component

area affected by

first L-component

Figure 28: This is the relationship between the areas a�ected by the �rst L and

D coe�cients.

H =
1

4

0
@ �1 �2 �1

2 4 2

�1 �2 �1

1
A

V =
1

4

0
@ �1 2 �1

�2 4 �2

�1 2 �1

1
A

D =
1

4

0
@ 1 �2 1

�2 4 �2

1 �2 1

1
A

This means for example that 1
4
of the value of the L-coe�cient is added to

the upper left pixel in the L-square, whereas the same pixel in a V-square would

get �1
4
of the value of the V-coe�cient.

In the EPIC program, everything is done sequentially. First the lowpass co-

e�cients are spread out using the L-matrix, then the detail is superimposed

using the H-matrix for the H data, V-matrix for the V data etc.

Before starting to develop the hardware algorithm, we had to do a feasibility

study. It did not take long before we had understood that the bottelneck was

the memory bandwidth. If we strictly followed the algorithm above, the last it-

eration step (from 256�256 to 512�512) would require a huge memory acceses:

� 5122 writes in order to zero the resulting image

� 4� 2562 to read the l, h, v and d coe�cients

� 9 � 4 � 2562 writes to the results, because each of the above coe�cients

spreads its data with the 3� 3 spreading matrix.

� 9 � 4 � 2562 reads from the results to be able to superimpose the data

above.

This sums up to 5242880 memory acesses for the last iteration only. To perform

that amount of memory operations 25 times a second we would need a memory

with a latency time of 1
25�5242880

= 7ns. Even if we had two separate memories,
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one for the coe�cients and the other for the result, the latter memory would

have to do 25 � 4718592 memory operations a second and thus need a latency

time of 8ns. Notice that this is using full pipelining, i.e. with all �ve iterations

being made simontaneously. As a comparison, normal cache memory today have

a latency time of about 20ns. Such a construction might be possible to build

but very expensive.

The solution to the memory bandwidth problems is to parallellize the prob-

lem. By calculating all four spreading matrixes at once it is no longer neccesary

to read and write back the results in order to superpose the between the di�erent

coe�cients L, H, V and D. After new spreading matrix is now used:

S =
1

4

0
BB@

d �2d� h d� 2h �h

�2d� v 4d+ l + 2h+ 2v �2d+ 2l + 4h� v l + 2h

d� 2v �2d+ 2l � h+ 4v d+ 4l � 2h� 2v 2l � h

�v l + 2v 2l � v l

1
CCA+ R

If you scrutinize it, you will see that it consists of the L, H, V and D matrices

superimposed. The D matrix will be found in the upper left part, the H matrix

in the upper right, whereas the V and L matrices will be found in the lower

left and right part respectively. This matrix is moved in steps of two over the

resluting picture, and since the matrix is 4 pixels wide two neigbour matrixes

overlap. The information in the overlapping pixels must be superimposed to

the next spreading matrix. This comes in as the matrix R in the �gure. The

nice thing is that the left part of the R matrix (i.e. elements r11, r12, r21, r22,

r31, r32, r41 and r42) can be received from the previous spreading matrix, and

can hence be stored in latches. The upper right four elements (i.e. r13, r14, r23,

and r24) derivates from the previous row. A special on-chip memory, the row

memory, gives us these values. The remaining part of the R matrix is zero.

After having performed the calculation, we must store the values. The right

half of the matrix is stored in latches for use by the next spreading matrix. The

lower left part is stored in the on-chip row memory. The 4 upper left elements

of the matrix will not need further processing and can be sent to the resulting

image. The number of reads and writes for the last iteration (512� 512pixels)

will be:

� 4� 2562 reads for the l, h, v and d coe�cients

� 4� 2562 reads from the row memory

� 4� 2562 writes to the row memory

� 4� 2562 writes to the �nal image

The coe�cient reading and the �nal image writing does not go to the same

memory. If we pipeline the process with the three stages read, calculate and

write, the writing from a block two stages earlier can be done at the same time

as the read. If we assume the on chip row memory to be at least twice as fast

as the o� chip memory, the number of sequencial memory accesses become just

4 � 2562 for the whole iteration. To save memory, all �ve iterations is done

in sequence. The last iterations is the biggest one, the one before that is only

one fourth of that. Together all �ve iterations require the following memory

operations in sequence:

� 4� 2572 For the last iteration
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� 4� 1292 for the 4th iteration

� 4� 652 for the 3rd iteration

� 4� 332 for the 2nd iteration

� 4� 172 for the 1st iteration

� 4� 1282 for copying

You may have noticed that we have used 257 instead of 256, 129 instead of 128

and so on. This is because of border phenomena. To get the correct values, the

algorithm must pretend the coe�cents (l, h, v and d) keeps the same values as

before the border. We then have to do one extra matrix spreading operation

per row, and one extra row. We also need to copy some values, because the

�rst iteration reads in memory A and stores the reconstructed lowpass coe�-

cients in memory B. In the next iteration the coe�cients are read from B and

stored in A. Thus we must copy the highpass information fromA to B in order to

be able to read it from there. All copying is done before the �rst iteration begin.

The sum of all these memory accesses will be 418708 memory accesses per

picture or 25� 418708 = 10467700 memory accesses per second which means a

memory latency time of 95ns. As a comparison, ordinary 486 66MHz PC:s are

shipped with DRAMS of 70ns.

The wavelet inverse tranform is implemented as a set of address generators

that accesses the source-, destination- and rowmemories. After the data has

been obtained, it is processed in a component called black box where the calcu-

lation takes place. The results is the feed back in latches or stored in row- and

destination memories. To control the adress generators there are three counters:

One xcounter, one ycounter and one iteration counter. These counters are vari-

able, the xcounter counts modulo 17, 33, 65, 129 and 257 using muxes coupled

to the iteration counter output. To get time for interchangeing memory, the

ycounter counts modulo 18, 34 etc.

The wavelet inverese transform needs 512Kbytes source memory and an equal

amount of destination memory. To allow the Hu�man and runlength decoder

to run in parallel with the inverse wavelet transform, an additional megabyte of

double bu�ering memory must be used.

5 Results and Conclusions

During a seven-week course, all software have been rewritten and NewWave has

been built by the authors. The hardware implementation, that is NewWave,

has been built, veri�ed by simulation and synthesized.

We have shown that the wavelet technique is the best compression method,

at least to our knowledge, and that it is useable also for making hardware.

Hopefully a standard for compressing images with wavelets will soon be es-

tablished.
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5.1 Technical Information

NewWave was developed as two constructions, the decoding part and the trans-

form part, running at di�erent clock speeds. The NewWave technical informa-

tion is presented below.

� NewWave decompresses 25 images per second.

� NewWave only decompresses 512� 512 greyscale images.

� The minimum compression ratio is � 25.

� The decoding part runs at 8.6 MHz

� The transform part runs at 10.5 MHz.

� The decoding part occupies 5mm2+512 bytes on-chip memory in ams cyb

technology.

� The transform part occupies 28.57 mm2 + 2048 bytes on-chip memory in

ams cyb technology.

� All memorymodules are clocked with 95 ns, which allows us to use DRAM

technology.
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A Tools

The tools used to develop, evaluate and simulate the hardware are described in

this section.

A.1 BBDS

BBDS14 is a design tool for architectural evaluation and rapid prototyping of

performance critical systems. Using BBDS and its interactive graphical inter-

face, a clock cycle true model can be developed. A design idea is quickly entered

into the tool using a well de�ned visualization called a Werner diagram15, and

can be veri�ed by simulation, timing analysis, area estimation and synthesis.

This facilitates explorative design with fast iteration time, which means that

the design space can be explored quickly.

Standard components, such as MUX:es, decoders, adders, comparators, latches,

etc are all part of BBDS. Components not included can be written in VHDL,

described below, and incorporated into BBDS. Since it is based on automatic

synthesis with a user selected target library, BBDS is technology independent.

A.2 VHDL

VHDL is a description lanuguage for digital electronic systems. It stands for

VHSIC Hardware Description Language, where VHSIC stands for Very High

Speed Integrated Circuits.

B Coding and decoding

EPIC uses Hu�man and runlength coding to compress the wavelet transformed

image. Hu�man and runlength decoding was used in the implementation of

the wavelet decompression algorithm. Therefor these techniques are described

below.

B.1 Hu�man's algorithm

Given a �nite set S of symbols, and a �nite string of symbols from S, the optimal

encoding problem is stated as follows:

Find an unambiguous binary encoding for S that minimizes the

number of bits in the encoded string.

Assume n symbols is to be encoded and wi is the number of times symbol i

occurs in the string. If di is the number of bits for the encoded symbol i, then

the total length of the encoded string, L, should be minimized.

L =

nX
i=1

widi

It can be shown, see [Kingston90], that Hu�man's algorithmminimizes L, using

a Hu�man tree (a kind of binary tree).

14Developed at the Department for Computer Engineering at Lund Institute of Technology.
15Werner diagram, also a principle developed at the Department of Computer Engineering,

Lund Institute of Technology.
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Throughout the construction of the tree, a forest (a set of trees) is used. Ini-

tially the forest consists entirely of external nodes, one for each symbol with

an associated weight. The root weight of each tree is the sum of the external

nodes' weights, wi. Combining two trees of minimum root weight into one until

only one tree is left, results in the Hu�man tree. The encoded symbols is de-

rived by traversing the tree from the root downto each external node and giving

the current symbol a zero for a left turn and a one for a right turn. Hu�man

coding is obviously a variable length coding algorithm. A demonstration of the

construction is shown in �gureOB 29.

External nodes are drawn as a boxes and internal nodes as a circles.

To code a string of symbols, �rst build the Hu�man tree and then simply
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Figure 29: Example of construction of a Hu�man tree. External nodes are

drawn as boxes and internal nodes as circles. The number in the boxes are the

number of occurences of the symbol associated with that box. The symbols are

not shown.

replace all the symbols with the encoded symbols. The information needed to

reconstruct the data is the Hu�man tree (together with the original symbols'

values)and the encoded string of symbols. Since the coding is unambiguous (no

code can be a pre�x of another), decoding of a symbol starts at the root of

the tree and takes a right turn for one and a left turn for a zero. When the

traversion reaches an external node, the encoded symbol is replaced with the

original symbol value at the node.
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B.2 Runlength encoding

The main advantage of transforming an image before coding it, is that a lot of

image components transforms to zero. As the name implies, runlength encoding

takes a run of equal symbols and and encodes them as one copy of the symbol

together with a number indicating the length of the run. For example, f0 0 0 0

0 0 0 0 0g could be encoded as f0 9g. EPIC only uses runlength encoding for

the zeros and thus the �rst symbol could be eliminated. To distinguish between

normal symbols and runlengths, the MSB of a 16 bit word is set to one if the

remaining 15 bits indicate the number of zeros of a runlength and it is set to

zero if they indicate a normal symbol value.

C Block schemes

Presented below are some of the two-phase block schemes developed for NewWave.

Figure 30: Hu�man decoding and runlength decoding block scheme from BBDS

D VHDL-code

In this section VHDL-code for the non standard components are shown.

FILE: adrlogik.hdl

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

LIBRARY ARITHMETIC;

USE ARITHMETIC.std_logic_arith.all;

entity adrlogik is
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port(

addr : in std_logic_vector(12 downto 0);

bitstrlen : in std_logic_vector( 7 downto 0);

huffmanlen : in std_logic_vector( 7 downto 0);

scalefactor : out std_logic_vector( 0 downto 0);

binsize0 : out std_logic_vector( 0 downto 0);

rawdata : out std_logic_vector( 0 downto 0);

symblen : out std_logic_vector( 0 downto 0);

hufflen : out std_logic_vector( 0 downto 0);

huffbitsave : out std_logic_vector( 0 downto 0);

hufftabsave : out std_logic_vector( 0 downto 0);

huffdecode : out std_logic_vector( 0 downto 0)

);

end adrlogik;

architecture BBDS_SIM of adrlogik is

begin

process(addr,bitstrlen,huffmanlen)

variable address,bitadd,huffadd:INTEGER;

begin

scalefactor<="0";

binsize0<="0";

rawdata<="0";

symblen<="0";

hufflen<="0";

huffbitsave<="0";

hufftabsave<="0";

huffdecode<="0";

address:=TO_INTEGER(addr);

bitadd:=TO_INTEGER(bitstrlen);

huffadd:=TO_INTEGER(huffmanlen);

if(address=0) then -- dummy if

huffdecode<="0";

elsif(address=1) then

scalefactor<="1";

elsif(address=2) then

binsize0<="1";

elsif(address>2) and (address<259) then

rawdata<="1";

elsif(address=259) then

symblen<="1";

elsif(address=260) then

hufflen<="1";

elsif(address>260) and (address<261+bitadd) then

huffbitsave<="1";

elsif(address>260+bitadd) and (address<261+bitadd+huffadd) then

hufftabsave<="1";

else

huffdecode<="1";

end if;

end process;

end BBDS_SIM;

FILE: decoder.hdl

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;
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LIBRARY ARITHMETIC;

USE ARITHMETIC.std_logic_arith.all;

entity decoder is

port(

tal : in std_logic_vector(15 downto 0);

bitnr : in std_logic_vector( 3 downto 0);

bit : out std_logic_vector( 0 downto 0)

);

end decoder;

architecture BBDS_SIM of decoder is

begin

process(tal,bitnr)

variable index:integer;

begin

index:=TO_INTEGER(bitnr);

if(index<8) then

index:=index+8;

else

index:=index-8;

end if;

bit(0)<=tal(index);

end process;

end BBDS_SIM;

FILE: multi.hdl

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

LIBRARY ARITHMETIC;

USE ARITHMETIC.std_logic_arith.all;

entity multi is

port(

multtal : in std_logic_vector(15 downto 0);

tal : in std_logic_vector(15 downto 0);

result : out std_logic_vector(15 downto 0)

);

end multi;

architecture BBDS_SIM of multi is

begin

process(multtal,tal)

variable tmp,ttal:integer RANGE -32768 to 32767;

begin

ttal:=TO_INTEGER(tal);

tmp:=TO_INTEGER(multtal);

result<=to_stdlogicvector(tmp*ttal,16);

end process;

end BBDS_SIM;

FILE: mux256.hdl

LIBRARY IEEE;
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USE IEEE.std_logic_1164.all;

LIBRARY ARITHMETIC;

USE ARITHMETIC.std_logic_arith.all;

USE std.textio.all;

entity mux256 is

port(

ED15 : in std_logic_vector(15 downto 0);

ED14 : in std_logic_vector(15 downto 0);

ED13 : in std_logic_vector(15 downto 0);

ED12 : in std_logic_vector(15 downto 0);

ED11 : in std_logic_vector(15 downto 0);

ED10 : in std_logic_vector(15 downto 0);

ED9 : in std_logic_vector(15 downto 0);

ED8 : in std_logic_vector(15 downto 0);

ED7 : in std_logic_vector(15 downto 0);

ED6 : in std_logic_vector(15 downto 0);

ED5 : in std_logic_vector(15 downto 0);

ED4 : in std_logic_vector(15 downto 0);

ED3 : in std_logic_vector(15 downto 0);

ED2 : in std_logic_vector(15 downto 0);

ED1 : in std_logic_vector(15 downto 0);

ED0 : in std_logic_vector(15 downto 0);

adr : in std_logic_vector( 7 downto 0);

outbit: out std_logic_vector( 0 downto 0);

word: out std_logic_vector( 15 downto 0)

);

end mux256;

architecture BBDS_SIM of mux256 is

begin

process(ED15,ED14,ED13,ED12,ED11,ED10,ED9,ED8,ED7,ED6,ED5,ED4,ED3,ED2,ED1,ED0,adr)

variable tmp: std_logic_vector(15 downto 0);

variable tadr,x: integer;

begin

outbit<="0";

tadr:=TO_INTEGER(('0' &adr) and "011110000");

case tadr is

when 0 =>

tmp:=ED0;

when 16 =>

tmp:=ED1;

when 32 =>

tmp:=ED2;

when 48 =>

tmp:=ED3;

when 64 =>

tmp:=ED4;

when 80 =>

tmp:=ED5;

when 96 =>

tmp:=ED6;

when 112 =>

tmp:=ED7;

when 128 =>

tmp:=ED8;

when 144 =>

tmp:=ED9;
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when 160 =>

tmp:=ED10;

when 176 =>

tmp:=ED11;

when 192 =>

tmp:=ED12;

when 208 =>

tmp:=ED13;

when 224 =>

tmp:=ED14;

when 240 =>

tmp:=ED15;

when others =>

tmp:="0000000000000000";

end case;

x:=TO_INTEGER(adr and "00001111");

if(x<8) then

x:=x+8;

else

x:=x-8;

end if;

outbit(0)<=tmp(x);

word<=tmp;

end process;

end BBDS_SIM;

FILE: neg.hdl

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

LIBRARY ARITHMETIC;

USE ARITHMETIC.std_logic_arith.all;

entity neg is

port(

tal : in std_logic_vector(13 downto 0);

negtal : out std_logic_vector(13 downto 0)

);

end neg;

architecture BBDS_SIM of neg is

begin

process(tal)

variable x:integer;

begin

x:=-TO_INTEGER(tal);

negtal<=to_stdlogicvector(x,14);

end process;

end BBDS_SIM;

FILE: shift.hdl

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

LIBRARY ARITHMETIC;
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USE ARITHMETIC.std_logic_arith.all;

entity shift is

port(

multtal : in std_logic_vector(15 downto 0);

adr : in std_logic_vector(17 downto 0);

result : out std_logic_vector(15 downto 0)

);

end shift;

architecture BBDS_SIM of shift is

begin

process(multtal,adr)

variable tadr:integer RANGE -2**18 to 2**18-1;

variable tmp:std_logic_vector(19 downto 0);

begin

tadr:=TO_INTEGER(adr);

if(tadr<1024) then

tmp:="0000" & multtal;

-- beh�all mult-faktorn

elsif(tadr<4096) then

tmp:="000" & multtal & '0';

elsif(tadr<16384) then

tmp:="00" & multtal & "00";

elsif(tadr<65536) then

tmp:='0' & multtal & "000";

else

tmp:=multtal & "0000";

end if;

result<=tmp(15 downto 0);

end process;

end BBDS_SIM;
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